RCMR 280k:基于PubMed摘要的精细移动识别语料库

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jie Li, Gaihong Yu, Zhixiong Zhang
{"title":"RCMR 280k:基于PubMed摘要的精细移动识别语料库","authors":"Jie Li, Gaihong Yu, Zhixiong Zhang","doi":"10.1162/dint_a_00214","DOIUrl":null,"url":null,"abstract":"ABSTRACT Existing datasets for move recognition, such as PubMed 200k RCT, exhibit several problems that significantly impact recognition performance, especially for Background and Objective labels. In order to improve the move recognition performance, we introduce a method and construct a refined corpus based on PubMed, named RCMR 280k. This corpus comprises approximately 280,000 structured abstracts, totaling 3,386,008 sentences, each sentence is labeled with one of five categories: Background, Objective, Method, Result, or Conclusion. We also construct a subset of RCMR, named RCMR_RCT, corresponding to medical subdomain of RCTs. We conduct comparison experiments using our RCMR, RCMR_RCT with PubMed 380k and PubMed 200k RCT, respectively. The best results, obtained using the MSMBERT model, show that: (1) our RCMR outperforms PubMed 380k by 0.82%, while our RCMR_RCT outperforms PubMed 200k RCT by 9.35%; (2) compared with PubMed 380k, our corpus achieve better improvement on the Results and Conclusions categories, with average F1 performance improves 1% and 0.82%, respectively; (3) compared with PubMed 200k RCT, our corpus significantly improves the performance in the Background and Objective categories, with average F1 scores improves 28.31% and 37.22%, respectively. To the best of our knowledge, our RCMR is among the rarely high-quality, resource-rich refined PubMed corpora available. Our work in this paper has been applied in the SciAIEngine, which is openly accessible for researchers to conduct move recognition task.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"511-536"},"PeriodicalIF":1.3000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RCMR 280k: Refined Corpus for Move Recognition Based on PubMed Abstracts\",\"authors\":\"Jie Li, Gaihong Yu, Zhixiong Zhang\",\"doi\":\"10.1162/dint_a_00214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Existing datasets for move recognition, such as PubMed 200k RCT, exhibit several problems that significantly impact recognition performance, especially for Background and Objective labels. In order to improve the move recognition performance, we introduce a method and construct a refined corpus based on PubMed, named RCMR 280k. This corpus comprises approximately 280,000 structured abstracts, totaling 3,386,008 sentences, each sentence is labeled with one of five categories: Background, Objective, Method, Result, or Conclusion. We also construct a subset of RCMR, named RCMR_RCT, corresponding to medical subdomain of RCTs. We conduct comparison experiments using our RCMR, RCMR_RCT with PubMed 380k and PubMed 200k RCT, respectively. The best results, obtained using the MSMBERT model, show that: (1) our RCMR outperforms PubMed 380k by 0.82%, while our RCMR_RCT outperforms PubMed 200k RCT by 9.35%; (2) compared with PubMed 380k, our corpus achieve better improvement on the Results and Conclusions categories, with average F1 performance improves 1% and 0.82%, respectively; (3) compared with PubMed 200k RCT, our corpus significantly improves the performance in the Background and Objective categories, with average F1 scores improves 28.31% and 37.22%, respectively. To the best of our knowledge, our RCMR is among the rarely high-quality, resource-rich refined PubMed corpora available. Our work in this paper has been applied in the SciAIEngine, which is openly accessible for researchers to conduct move recognition task.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"5 1\",\"pages\":\"511-536\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00214\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00214","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的移动识别数据集,如PubMed 200k RCT,存在几个显著影响识别性能的问题,特别是对于背景和目标标签。为了提高移动识别的性能,我们引入了一种基于PubMed的方法,并构建了一个精细化的语料库RCMR 280k。该语料库包含大约280,000个结构化摘要,共计3,386,008个句子,每个句子标记为五个类别之一:背景,目标,方法,结果或结论。我们还构造了一个RCMR子集,命名为RCMR_RCT,对应于RCTs的医学子域。我们分别使用我们的RCMR、RCMR_RCT与PubMed 380k和PubMed 200k RCT进行对比实验。使用MSMBERT模型获得的最佳结果表明:(1)我们的RCMR比PubMed 380k高0.82%,而我们的RCMR_RCT比PubMed 200k RCT高9.35%;(2)与PubMed 380k相比,我们的语料库在Results和conclusion类别上取得了更好的改进,平均F1性能分别提高了1%和0.82%;(3)与PubMed 200k RCT相比,我们的语料库在Background和Objective类别上的性能显著提高,平均F1分数分别提高了28.31%和37.22%。据我们所知,我们的RCMR是为数不多的高质量、资源丰富的精炼PubMed语料库之一。我们的工作已应用于SciAIEngine,该引擎对研究人员开放,可供他们进行移动识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RCMR 280k: Refined Corpus for Move Recognition Based on PubMed Abstracts
ABSTRACT Existing datasets for move recognition, such as PubMed 200k RCT, exhibit several problems that significantly impact recognition performance, especially for Background and Objective labels. In order to improve the move recognition performance, we introduce a method and construct a refined corpus based on PubMed, named RCMR 280k. This corpus comprises approximately 280,000 structured abstracts, totaling 3,386,008 sentences, each sentence is labeled with one of five categories: Background, Objective, Method, Result, or Conclusion. We also construct a subset of RCMR, named RCMR_RCT, corresponding to medical subdomain of RCTs. We conduct comparison experiments using our RCMR, RCMR_RCT with PubMed 380k and PubMed 200k RCT, respectively. The best results, obtained using the MSMBERT model, show that: (1) our RCMR outperforms PubMed 380k by 0.82%, while our RCMR_RCT outperforms PubMed 200k RCT by 9.35%; (2) compared with PubMed 380k, our corpus achieve better improvement on the Results and Conclusions categories, with average F1 performance improves 1% and 0.82%, respectively; (3) compared with PubMed 200k RCT, our corpus significantly improves the performance in the Background and Objective categories, with average F1 scores improves 28.31% and 37.22%, respectively. To the best of our knowledge, our RCMR is among the rarely high-quality, resource-rich refined PubMed corpora available. Our work in this paper has been applied in the SciAIEngine, which is openly accessible for researchers to conduct move recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信