超对称系统的再参数化不变模型:BRST和超变量方法

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS
A. Tripathi, B. Chauhan, A. Rao, R. Malik
{"title":"超对称系统的再参数化不变模型:BRST和超变量方法","authors":"A. Tripathi, B. Chauhan, A. Rao, R. Malik","doi":"10.1155/2021/2056629","DOIUrl":null,"url":null,"abstract":"We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one \n \n \n \n 0\n +\n 1\n \n \n \n -dimensional (1D) model of a free massive spinning relativistic particle (i.e., a supersymmetric system) by exploiting its classical infinitesimal and continuous reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-)BRST invariant Curci-Ferrari- (CF-) type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent (anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type restriction by proving the (i) symmetry invariance of the coupled Lagrangians and (ii) the absolute anticommutativity property of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e., a 1D model of a massive spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-SUSY reparameterization (i.e., 1D diffeomorphism) invariant models of the (non-)relativistic particles.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reparameterization Invariant Model of a Supersymmetric System: BRST and Supervariable Approaches\",\"authors\":\"A. Tripathi, B. Chauhan, A. Rao, R. Malik\",\"doi\":\"10.1155/2021/2056629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one \\n \\n \\n \\n 0\\n +\\n 1\\n \\n \\n \\n -dimensional (1D) model of a free massive spinning relativistic particle (i.e., a supersymmetric system) by exploiting its classical infinitesimal and continuous reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-)BRST invariant Curci-Ferrari- (CF-) type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent (anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type restriction by proving the (i) symmetry invariance of the coupled Lagrangians and (ii) the absolute anticommutativity property of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e., a 1D model of a massive spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-SUSY reparameterization (i.e., 1D diffeomorphism) invariant models of the (non-)relativistic particles.\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/2056629\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/2056629","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 5

摘要

我们通过利用经典的无穷小和连续的再参数化对称变换,对一个自由大质量自旋相对论粒子(即超对称系统)的一个0 + 1维(1D)模型进行了Becchi-Rouet-Stora-Tyutin (BRST)量子化。利用改进的Bonora-Tonin (BT)超变量方法(MBTSA)对BRST形式化,得到了目标空间变量的幂零(反)BRST对称变换和超对称系统一维模型的(反)BRST不变Curci-Ferrari- (CF-)型约束。利用BRST形式的(反)手性超变量方法(ACSA)推导了模型中其他变量的幂零(反)BRST对称变换。在后者的框架内,我们通过证明(i)耦合拉格朗日量的对称不变性和(ii)守恒(反)BRST电荷的绝对反交换性,证明了cf型约束的存在性。将MBTSA应用于物理超对称性系统(即大质量自旋粒子的一维模型)是我们目前努力的一个新结果。在ACSA的应用中,我们只考虑了超变量的(反)手性超展开。因此,观察到(反)BRST电荷的绝对反交换性是一个新的结果。cf型限制在本质上是通用的,因为它对(非)相对论性粒子的SUSY和非SUSY再参数化(即1D微分同构)不变模型是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reparameterization Invariant Model of a Supersymmetric System: BRST and Supervariable Approaches
We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one 0 + 1 -dimensional (1D) model of a free massive spinning relativistic particle (i.e., a supersymmetric system) by exploiting its classical infinitesimal and continuous reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-)BRST invariant Curci-Ferrari- (CF-) type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent (anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type restriction by proving the (i) symmetry invariance of the coupled Lagrangians and (ii) the absolute anticommutativity property of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e., a 1D model of a massive spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-SUSY reparameterization (i.e., 1D diffeomorphism) invariant models of the (non-)relativistic particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信