近似𝜎_{2,𝑝}能量最小值的Fourier-Legendre谱方法

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
M. Taghavi, M. Shahrokhi-Dehkordi
{"title":"近似𝜎_{2,𝑝}能量最小值的Fourier-Legendre谱方法","authors":"M. Taghavi, M. Shahrokhi-Dehkordi","doi":"10.1090/qam/1674","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a Fourier-Legendre spectral method to find the minimizers of a variational problem, called <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma Subscript 2 comma p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\sigma _{2,p}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-energy, in polar coordinates. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper X subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">X</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathbb {X}}\\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a bounded Lipschitz domain and consider the energy functional <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1.1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1.1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(1.1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose integrand is defined by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper W left-parenthesis nabla u left-parenthesis x right-parenthesis right-parenthesis colon-equal left-parenthesis sigma 2 left-parenthesis u right-parenthesis right-parenthesis Superscript StartFraction p Over 2 EndFraction Baseline plus normal upper Phi left-parenthesis det nabla u right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">W</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo movablelimits=\"true\" form=\"prefix\">det</mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathbf {W}}(\\nabla u(x))≔(\\sigma _2(u))^{\\frac {p}{2}}+\\Phi (\\det \\nabla u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over an appropriate space of admissible maps, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript p Baseline left-parenthesis double-struck upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">X</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}_p({\\mathbb {X}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Using Fourier and Legendre interpolation errors, we obtain an error estimate for the energy functional and prove a convergence theorem for the proposed method. Furthermore, we apply the gradient descent method to solve a nonlinear algebraic system which is obtained by discretizing the Euler-Lagrange equations. The numerical experiments are performed to demonstrate the accuracy and effectiveness of our method.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fourier-Legendre spectral method for approximating the minimizers of 𝜎_{2,𝑝}-energy\",\"authors\":\"M. Taghavi, M. Shahrokhi-Dehkordi\",\"doi\":\"10.1090/qam/1674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a Fourier-Legendre spectral method to find the minimizers of a variational problem, called <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma Subscript 2 comma p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma _{2,p}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-energy, in polar coordinates. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper X subset-of double-struck upper R Superscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">X</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathbb {X}}\\\\subset \\\\mathbb {R}^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a bounded Lipschitz domain and consider the energy functional <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 1.1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1.1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(1.1)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> whose integrand is defined by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper W left-parenthesis nabla u left-parenthesis x right-parenthesis right-parenthesis colon-equal left-parenthesis sigma 2 left-parenthesis u right-parenthesis right-parenthesis Superscript StartFraction p Over 2 EndFraction Baseline plus normal upper Phi left-parenthesis det nabla u right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">W</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>u</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mi>p</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>+</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Φ<!-- Φ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">det</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathbf {W}}(\\\\nabla u(x))≔(\\\\sigma _2(u))^{\\\\frac {p}{2}}+\\\\Phi (\\\\det \\\\nabla u)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over an appropriate space of admissible maps, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Subscript p Baseline left-parenthesis double-struck upper X right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">X</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}_p({\\\\mathbb {X}})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Using Fourier and Legendre interpolation errors, we obtain an error estimate for the energy functional and prove a convergence theorem for the proposed method. Furthermore, we apply the gradient descent method to solve a nonlinear algebraic system which is obtained by discretizing the Euler-Lagrange equations. The numerical experiments are performed to demonstrate the accuracy and effectiveness of our method.</p>\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1674\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1674","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种Fourier-Legendre谱法来求极坐标下变分问题σ 2,p \sigma _2,p{ -能量的最小值。设X∧R n }{\mathbb X{}}\subset\mathbb R{^n是一个有界的Lipschitz域,并且考虑其被积量为W(∇u (X))的能量泛函数(1.1)(1.1),其定义为W(∇u (X))是(σ 2 (u))p2+ Φ (det∇u) }{\mathbf W{(}}\nabla u(x))是(\sigma _2(u))^ {\frac p2{+ }{}}\Phi (\det\nabla u)在一个适当空间上的可接受映射,A p(x) \mathcal A_p{(}{\mathbb x){。}}利用傅里叶插值误差和勒让德插值误差,得到了能量泛函的误差估计,并证明了该方法的收敛性定理。在此基础上,应用梯度下降法求解由欧拉-拉格朗日方程离散得到的非线性代数方程组。数值实验验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fourier-Legendre spectral method for approximating the minimizers of 𝜎_{2,𝑝}-energy

This paper proposes a Fourier-Legendre spectral method to find the minimizers of a variational problem, called σ 2 , p \sigma _{2,p} -energy, in polar coordinates. Let X R n {\mathbb {X}}\subset \mathbb {R}^n be a bounded Lipschitz domain and consider the energy functional ( 1.1 ) (1.1) whose integrand is defined by W ( u ( x ) ) ( σ 2 ( u ) ) p 2 + Φ ( det u ) {\mathbf {W}}(\nabla u(x))≔(\sigma _2(u))^{\frac {p}{2}}+\Phi (\det \nabla u) over an appropriate space of admissible maps, A p ( X ) \mathcal {A}_p({\mathbb {X}}) . Using Fourier and Legendre interpolation errors, we obtain an error estimate for the energy functional and prove a convergence theorem for the proposed method. Furthermore, we apply the gradient descent method to solve a nonlinear algebraic system which is obtained by discretizing the Euler-Lagrange equations. The numerical experiments are performed to demonstrate the accuracy and effectiveness of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信