S. Suresh, S. Bera, Chandramohan Palogi, S. B, Jegadeesan P, Krishna Mohan T.V
{"title":"碳钢表面氧化膜在高温碱性水中锌、镁离子存在下的腐蚀行为","authors":"S. Suresh, S. Bera, Chandramohan Palogi, S. B, Jegadeesan P, Krishna Mohan T.V","doi":"10.1080/1478422X.2023.2212456","DOIUrl":null,"url":null,"abstract":"ABSTRACT Magnetite films on carbon steel are known to reduce corrosion in high temperature aqueous medium. The magnetite films were modified in-situ by introducing Zn and Mg in autoclave by hydrothermal process at 250°C. The film developed in the presence of Zn were thinner with particle size 150 nm after 240 h exposure compared to that developed in the presence of Mg with particle size 223 nm. The depth distribution of Zn and Mg monitored by Rutherford backscattering spectrometry showed that Mg was present more at the top surface, whereas Zn were almost uniform across the depth of the film. Contact angle measurements and electrochemical studies of coated specimens showed an increased corrosion resistance in presence of Zn and Mg in comparison to known passive magnetite layer formed in their absence. It was shown that Zn is a better candidate for corrosion resistance of carbon steel in high temperature aqueous medium.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"492 - 507"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion behaviour of oxide film formed on carbon steel in high temperature alkaline water in the presence of zinc and magnesium ions\",\"authors\":\"S. Suresh, S. Bera, Chandramohan Palogi, S. B, Jegadeesan P, Krishna Mohan T.V\",\"doi\":\"10.1080/1478422X.2023.2212456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Magnetite films on carbon steel are known to reduce corrosion in high temperature aqueous medium. The magnetite films were modified in-situ by introducing Zn and Mg in autoclave by hydrothermal process at 250°C. The film developed in the presence of Zn were thinner with particle size 150 nm after 240 h exposure compared to that developed in the presence of Mg with particle size 223 nm. The depth distribution of Zn and Mg monitored by Rutherford backscattering spectrometry showed that Mg was present more at the top surface, whereas Zn were almost uniform across the depth of the film. Contact angle measurements and electrochemical studies of coated specimens showed an increased corrosion resistance in presence of Zn and Mg in comparison to known passive magnetite layer formed in their absence. It was shown that Zn is a better candidate for corrosion resistance of carbon steel in high temperature aqueous medium.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"58 1\",\"pages\":\"492 - 507\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2023.2212456\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2023.2212456","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion behaviour of oxide film formed on carbon steel in high temperature alkaline water in the presence of zinc and magnesium ions
ABSTRACT Magnetite films on carbon steel are known to reduce corrosion in high temperature aqueous medium. The magnetite films were modified in-situ by introducing Zn and Mg in autoclave by hydrothermal process at 250°C. The film developed in the presence of Zn were thinner with particle size 150 nm after 240 h exposure compared to that developed in the presence of Mg with particle size 223 nm. The depth distribution of Zn and Mg monitored by Rutherford backscattering spectrometry showed that Mg was present more at the top surface, whereas Zn were almost uniform across the depth of the film. Contact angle measurements and electrochemical studies of coated specimens showed an increased corrosion resistance in presence of Zn and Mg in comparison to known passive magnetite layer formed in their absence. It was shown that Zn is a better candidate for corrosion resistance of carbon steel in high temperature aqueous medium.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.