中矢状脑MR图像中胼胝体的自动分割

Yue Li, Huiquan Wang, Nizam Ahmed, M. Mandal
{"title":"中矢状脑MR图像中胼胝体的自动分割","authors":"Yue Li, Huiquan Wang, Nizam Ahmed, M. Mandal","doi":"10.21917/IJIVP.2017.0220","DOIUrl":null,"url":null,"abstract":"Corpus Callosum (CC) is an important white-matter structure in the human brain. Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that provides high resolution images for the structures. Segmentation is an important step in medical image analysis. This paper proposes a fully automated technique for segmentation of CC on the midsagittal slice of T1-weighted brain MR images. The proposed technique consists of three modules. First it clusters all homogenous regions in the image with an adaptive mean shift (AMS) technique. The automatic CC contour initialization (ACI) is achieved using the region analysis, template matching and location analysis, thus identify the CC region. Finally, the boundary of recognized CC region is used as the initial contour in the Geometric Active Contour (GAC) model, and is evolved to obtain the final segmentation result of CC. Experimental results demonstrate that the proposed AMS-ACI technique is able to provide accurate initial CC contour, and the proposed AMS-ACI-GAC technique overcomes the problem of user-guided initialization in existing GAC techniques, and provides a reliable and accurate performance in CC segmentation.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"8 1","pages":"1554-1565"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"AUTOMATED CORPUS CALLOSUM SEGMENTATION IN MIDSAGITTAL BRAIN MR IMAGES\",\"authors\":\"Yue Li, Huiquan Wang, Nizam Ahmed, M. Mandal\",\"doi\":\"10.21917/IJIVP.2017.0220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corpus Callosum (CC) is an important white-matter structure in the human brain. Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that provides high resolution images for the structures. Segmentation is an important step in medical image analysis. This paper proposes a fully automated technique for segmentation of CC on the midsagittal slice of T1-weighted brain MR images. The proposed technique consists of three modules. First it clusters all homogenous regions in the image with an adaptive mean shift (AMS) technique. The automatic CC contour initialization (ACI) is achieved using the region analysis, template matching and location analysis, thus identify the CC region. Finally, the boundary of recognized CC region is used as the initial contour in the Geometric Active Contour (GAC) model, and is evolved to obtain the final segmentation result of CC. Experimental results demonstrate that the proposed AMS-ACI technique is able to provide accurate initial CC contour, and the proposed AMS-ACI-GAC technique overcomes the problem of user-guided initialization in existing GAC techniques, and provides a reliable and accurate performance in CC segmentation.\",\"PeriodicalId\":30615,\"journal\":{\"name\":\"ICTACT Journal on Image and Video Processing\",\"volume\":\"8 1\",\"pages\":\"1554-1565\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICTACT Journal on Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21917/IJIVP.2017.0220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/IJIVP.2017.0220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

胼胝体(CC)是人脑中一种重要的白质结构。磁共振成像(MRI)是一种为结构提供高分辨率图像的非侵入性医学成像技术。分割是医学图像分析中的一个重要步骤。本文提出了一种全自动的T1加权脑磁共振图像中矢状切片CC分割技术。所提出的技术由三个模块组成。首先,它使用自适应平均偏移(AMS)技术对图像中的所有同质区域进行聚类。通过区域分析、模板匹配和位置分析实现了CC轮廓的自动初始化,从而识别出CC区域。最后,在几何主动轮廓(GAC)模型中,将识别出的CC区域的边界作为初始轮廓,并对其进行进化以获得CC的最终分割结果。实验结果表明,所提出的AMS-ACI技术能够提供准确的初始CC轮廓,并且所提出的AMS-ACI-GAC技术克服了现有GAC技术中用户引导初始化的问题,并在CC分割中提供了可靠和准确的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AUTOMATED CORPUS CALLOSUM SEGMENTATION IN MIDSAGITTAL BRAIN MR IMAGES
Corpus Callosum (CC) is an important white-matter structure in the human brain. Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that provides high resolution images for the structures. Segmentation is an important step in medical image analysis. This paper proposes a fully automated technique for segmentation of CC on the midsagittal slice of T1-weighted brain MR images. The proposed technique consists of three modules. First it clusters all homogenous regions in the image with an adaptive mean shift (AMS) technique. The automatic CC contour initialization (ACI) is achieved using the region analysis, template matching and location analysis, thus identify the CC region. Finally, the boundary of recognized CC region is used as the initial contour in the Geometric Active Contour (GAC) model, and is evolved to obtain the final segmentation result of CC. Experimental results demonstrate that the proposed AMS-ACI technique is able to provide accurate initial CC contour, and the proposed AMS-ACI-GAC technique overcomes the problem of user-guided initialization in existing GAC techniques, and provides a reliable and accurate performance in CC segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信