{"title":"包括频率和温度的水泥混凝土综合介电模型","authors":"Meili Meng, Zhanglan Chen, F. Wang","doi":"10.1680/jadcr.21.00196","DOIUrl":null,"url":null,"abstract":"The dielectric properties of cement concrete are not only related to the dielectric properties and volume ratio of each component, but also related to frequency and temperature. In order to analyze these influencing factors, a dielectric constant test was done in the laboratory. Experimental results show that the dielectric constants decrease linearly with temperature increasing and decreases exponentially with the increase of frequency. Based on the experimental rules, a new dielectric model including frequency and temperature is established and verified by experiments. The verification results show that the calculation accuracy of the comprehensive dielectric model after considering the influence of frequency and temperature is improved by 25.5%, which meets the requirements of engineering detection accuracy. The model is applied to engineering practice, and the calculation methods of pavement structural layer thickness and moisture content are developed. The results show that the comprehensive dielectric model established in this paper has smaller error and higher accuracy. Using this dielectric model, the data conversion between different frequency and temperature can be achieved. The research results of this paper can provide reference and basis for the quality evaluation of concrete structures.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comprehensive dielectric model of cement concrete including frequency and temperature\",\"authors\":\"Meili Meng, Zhanglan Chen, F. Wang\",\"doi\":\"10.1680/jadcr.21.00196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dielectric properties of cement concrete are not only related to the dielectric properties and volume ratio of each component, but also related to frequency and temperature. In order to analyze these influencing factors, a dielectric constant test was done in the laboratory. Experimental results show that the dielectric constants decrease linearly with temperature increasing and decreases exponentially with the increase of frequency. Based on the experimental rules, a new dielectric model including frequency and temperature is established and verified by experiments. The verification results show that the calculation accuracy of the comprehensive dielectric model after considering the influence of frequency and temperature is improved by 25.5%, which meets the requirements of engineering detection accuracy. The model is applied to engineering practice, and the calculation methods of pavement structural layer thickness and moisture content are developed. The results show that the comprehensive dielectric model established in this paper has smaller error and higher accuracy. Using this dielectric model, the data conversion between different frequency and temperature can be achieved. The research results of this paper can provide reference and basis for the quality evaluation of concrete structures.\",\"PeriodicalId\":7299,\"journal\":{\"name\":\"Advances in Cement Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cement Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.21.00196\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.21.00196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Comprehensive dielectric model of cement concrete including frequency and temperature
The dielectric properties of cement concrete are not only related to the dielectric properties and volume ratio of each component, but also related to frequency and temperature. In order to analyze these influencing factors, a dielectric constant test was done in the laboratory. Experimental results show that the dielectric constants decrease linearly with temperature increasing and decreases exponentially with the increase of frequency. Based on the experimental rules, a new dielectric model including frequency and temperature is established and verified by experiments. The verification results show that the calculation accuracy of the comprehensive dielectric model after considering the influence of frequency and temperature is improved by 25.5%, which meets the requirements of engineering detection accuracy. The model is applied to engineering practice, and the calculation methods of pavement structural layer thickness and moisture content are developed. The results show that the comprehensive dielectric model established in this paper has smaller error and higher accuracy. Using this dielectric model, the data conversion between different frequency and temperature can be achieved. The research results of this paper can provide reference and basis for the quality evaluation of concrete structures.
期刊介绍:
Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.