颗粒物质中的定制颗粒形状

IF 1.2 Q3 PHYSICS, MULTIDISCIPLINARY
D. Cantor, Manuel Cárdenas-Barrantes, L. Orozco
{"title":"颗粒物质中的定制颗粒形状","authors":"D. Cantor, Manuel Cárdenas-Barrantes, L. Orozco","doi":"10.4279/pip.140007","DOIUrl":null,"url":null,"abstract":"Among granular matter, one type of particle has special properties. Upon being assembled in disordered configurations, these particles interlock, hook, almost braid, and – surprisingly, considering their relatively low packing fractions – show exceptional shear strength.Such is the case of non-convex particles. They have been used in the shapes of tetrapods, ‘L’, ‘Z’, stars, and many others, to protect coasts or build self-standing structures requiring no binders or external supports. Although these structures are often designed without a comprehensive mechanical characterization, they have already demonstrated great potential as highly resistant construction materials. Nevertheless, it is natural to attempt to find the most appropriate non-convex shapes for any given application. Can a particle shape be tuned to obtain a desired mechanical behavior? Although this question cannot be answered yet, current technological, simulation, and experimental developments strongly suggest that it can be resolved in the next decade. A clear understanding of the relationships between particle shapes, mechanical response, and packing properties will be key to providing insights into the behavior of these materials. Such work should stand on 1) robust and general shape descriptors that encode the complexity of non-convex shapes (i.e., the number of arms, the symmetries, and asymmetries of the bodies, the presence of holes, etc.), 2) the analysis of the response of assemblies under different loading conditions, and 3) the disposition and reliability of non-convex shapes to ensure durability. The manufacturing process and an efficient use of resources are additional elements that could further help to optimize particle shape. In the quest of designing bespoke non-convex particles, this paper consolidates the challenges that remain unresolved. It also outlines some routes to explore based on the latest developments in technology and research.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bespoke particle shapes in granular matter\",\"authors\":\"D. Cantor, Manuel Cárdenas-Barrantes, L. Orozco\",\"doi\":\"10.4279/pip.140007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among granular matter, one type of particle has special properties. Upon being assembled in disordered configurations, these particles interlock, hook, almost braid, and – surprisingly, considering their relatively low packing fractions – show exceptional shear strength.Such is the case of non-convex particles. They have been used in the shapes of tetrapods, ‘L’, ‘Z’, stars, and many others, to protect coasts or build self-standing structures requiring no binders or external supports. Although these structures are often designed without a comprehensive mechanical characterization, they have already demonstrated great potential as highly resistant construction materials. Nevertheless, it is natural to attempt to find the most appropriate non-convex shapes for any given application. Can a particle shape be tuned to obtain a desired mechanical behavior? Although this question cannot be answered yet, current technological, simulation, and experimental developments strongly suggest that it can be resolved in the next decade. A clear understanding of the relationships between particle shapes, mechanical response, and packing properties will be key to providing insights into the behavior of these materials. Such work should stand on 1) robust and general shape descriptors that encode the complexity of non-convex shapes (i.e., the number of arms, the symmetries, and asymmetries of the bodies, the presence of holes, etc.), 2) the analysis of the response of assemblies under different loading conditions, and 3) the disposition and reliability of non-convex shapes to ensure durability. The manufacturing process and an efficient use of resources are additional elements that could further help to optimize particle shape. In the quest of designing bespoke non-convex particles, this paper consolidates the challenges that remain unresolved. It also outlines some routes to explore based on the latest developments in technology and research.\",\"PeriodicalId\":19791,\"journal\":{\"name\":\"Papers in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4279/pip.140007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.140007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

在颗粒物质中,有一种颗粒具有特殊的性质。在以无序配置组装时,这些颗粒互锁、钩状、几乎编织,令人惊讶的是,考虑到它们相对较低的填充分数,它们显示出非凡的剪切强度。这就是非凸粒子的情况。它们被用于四足动物、“L”、“Z”、恒星和许多其他形状,以保护海岸或建造不需要粘合剂或外部支撑的自立结构。尽管这些结构通常在设计时没有全面的机械特性,但它们已经显示出作为高抵抗力建筑材料的巨大潜力。然而,尝试为任何给定的应用找到最合适的非凸形状是很自然的。粒子形状是否可以调整以获得所需的机械行为?尽管这个问题还无法回答,但目前的技术、模拟和实验发展有力地表明,它可以在未来十年内得到解决。清楚地了解颗粒形状、机械响应和填料性能之间的关系将是深入了解这些材料行为的关键。此类工作应基于1)稳健和通用的形状描述符,该描述符编码非凸形状的复杂性(即臂的数量、主体的对称性和不对称性、孔的存在等),2)组件在不同载荷条件下的响应分析,以及3)非凸形的配置和可靠性,以确保耐用性。制造过程和资源的有效利用是可以进一步帮助优化颗粒形状的附加元素。在设计定制非凸粒子的过程中,本文整合了尚未解决的挑战。它还根据技术和研究的最新发展概述了一些需要探索的路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bespoke particle shapes in granular matter
Among granular matter, one type of particle has special properties. Upon being assembled in disordered configurations, these particles interlock, hook, almost braid, and – surprisingly, considering their relatively low packing fractions – show exceptional shear strength.Such is the case of non-convex particles. They have been used in the shapes of tetrapods, ‘L’, ‘Z’, stars, and many others, to protect coasts or build self-standing structures requiring no binders or external supports. Although these structures are often designed without a comprehensive mechanical characterization, they have already demonstrated great potential as highly resistant construction materials. Nevertheless, it is natural to attempt to find the most appropriate non-convex shapes for any given application. Can a particle shape be tuned to obtain a desired mechanical behavior? Although this question cannot be answered yet, current technological, simulation, and experimental developments strongly suggest that it can be resolved in the next decade. A clear understanding of the relationships between particle shapes, mechanical response, and packing properties will be key to providing insights into the behavior of these materials. Such work should stand on 1) robust and general shape descriptors that encode the complexity of non-convex shapes (i.e., the number of arms, the symmetries, and asymmetries of the bodies, the presence of holes, etc.), 2) the analysis of the response of assemblies under different loading conditions, and 3) the disposition and reliability of non-convex shapes to ensure durability. The manufacturing process and an efficient use of resources are additional elements that could further help to optimize particle shape. In the quest of designing bespoke non-convex particles, this paper consolidates the challenges that remain unresolved. It also outlines some routes to explore based on the latest developments in technology and research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Papers in Physics
Papers in Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
13
期刊介绍: Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信