{"title":"密切品种及其联接:$\\mathbb{P}^1 \\times\\mathbb{P}^1$","authors":"E. Ballico","doi":"10.56754/0719-0646.2502.331","DOIUrl":null,"url":null,"abstract":"Let $X\\subset \\PP^r$ be an integral projective variety. We study the dimensions of the joins of several copies of the osculating varieties $J(X,m)$ of $X$. Our methods are general, but we give a full description in all cases only if $X$ is a linearly normal embedding of $\\PP^1\\times \\PP^1$. For these embeddings of $\\PP^1\\times \\PP^1$ we give several examples and then study the joins of one copy of $J(X,m)$ and an arbitrary number of copies of $X$.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osculating varieties and their joins: $\\\\mathbb{P}^1\\\\times \\\\mathbb{P}^1$\",\"authors\":\"E. Ballico\",\"doi\":\"10.56754/0719-0646.2502.331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X\\\\subset \\\\PP^r$ be an integral projective variety. We study the dimensions of the joins of several copies of the osculating varieties $J(X,m)$ of $X$. Our methods are general, but we give a full description in all cases only if $X$ is a linearly normal embedding of $\\\\PP^1\\\\times \\\\PP^1$. For these embeddings of $\\\\PP^1\\\\times \\\\PP^1$ we give several examples and then study the joins of one copy of $J(X,m)$ and an arbitrary number of copies of $X$.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2502.331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Osculating varieties and their joins: $\mathbb{P}^1\times \mathbb{P}^1$
Let $X\subset \PP^r$ be an integral projective variety. We study the dimensions of the joins of several copies of the osculating varieties $J(X,m)$ of $X$. Our methods are general, but we give a full description in all cases only if $X$ is a linearly normal embedding of $\PP^1\times \PP^1$. For these embeddings of $\PP^1\times \PP^1$ we give several examples and then study the joins of one copy of $J(X,m)$ and an arbitrary number of copies of $X$.