不变算子的Fredholm条件:有限阿贝尔群和边值问题

IF 0.7 4区 数学 Q2 MATHEMATICS
Alexandre Baldare, R. Come, M. Lesch, V. Nistor
{"title":"不变算子的Fredholm条件:有限阿贝尔群和边值问题","authors":"Alexandre Baldare, R. Come, M. Lesch, V. Nistor","doi":"10.7900/jot.2019feb26.2270","DOIUrl":null,"url":null,"abstract":"Let Γ be a finite abelian group acting on a smooth, compact manifold M without boundary and let P∈ψm(M;E0,E1) be a Γ-invariant, classical, pseudodifferential operator acting between sections of two Γ-equivariant vector bundles. Let α be an irreducible representation of Γ. We obtain necessary and sufficient conditions for the restriction πα(P):Hs(M;E0)α→Hs−m(M;E1)α of P between the α-isotypical components of Sobolev spaces to be Fredholm.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fredholm conditions for invariant operators: finite abelian groups and boundary value problems\",\"authors\":\"Alexandre Baldare, R. Come, M. Lesch, V. Nistor\",\"doi\":\"10.7900/jot.2019feb26.2270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Γ be a finite abelian group acting on a smooth, compact manifold M without boundary and let P∈ψm(M;E0,E1) be a Γ-invariant, classical, pseudodifferential operator acting between sections of two Γ-equivariant vector bundles. Let α be an irreducible representation of Γ. We obtain necessary and sufficient conditions for the restriction πα(P):Hs(M;E0)α→Hs−m(M;E1)α of P between the α-isotypical components of Sobolev spaces to be Fredholm.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2019feb26.2270\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019feb26.2270","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

设Γ是作用在光滑紧致无边界流形M上的有限阿贝尔群,设P∈ψM(M;E0,E1)是作用在两个Γ-等变向量丛的区间之间的Γ-不变的经典伪微分算子。设α是Γ的不可约表示。我们得到了限制πα(P):Hs(M;E0)α的充要条件→Sobolev空间的α-同构分量之间P的Hs−m(m;E1)α为Fredholm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fredholm conditions for invariant operators: finite abelian groups and boundary value problems
Let Γ be a finite abelian group acting on a smooth, compact manifold M without boundary and let P∈ψm(M;E0,E1) be a Γ-invariant, classical, pseudodifferential operator acting between sections of two Γ-equivariant vector bundles. Let α be an irreducible representation of Γ. We obtain necessary and sufficient conditions for the restriction πα(P):Hs(M;E0)α→Hs−m(M;E1)α of P between the α-isotypical components of Sobolev spaces to be Fredholm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信