拟线性Schrödinger方程的多重归一化对偶解

Pub Date : 2023-02-26 DOI:10.12775/tmna.2022.052
Lin Zhang, Yongqing Li, Zhi-Qiang Wang
{"title":"拟线性Schrödinger方程的多重归一化对偶解","authors":"Lin Zhang, Yongqing Li, Zhi-Qiang Wang","doi":"10.12775/tmna.2022.052","DOIUrl":null,"url":null,"abstract":"In this paper, we construct multiple normalized solutions of the following from quasi-linear Schrödinger equation:\n\n-\\Delta u-\\Delta(|u|^{2})u-\\mu u=|u|^{p-2}u, \\quad\\text{in } \\mathbb{R}^N,\n\nsubject to a mass-subcritical constraint. In order to overcome non-smoothness of the associated variational formulation we make use of the dual approach.\nThe constructed solutions possess energies being clustered at $0$ level which makes it difficult to use existing methods \nfor non-smooth variational problems such as the variational perturbation approach.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple normalized solutions for a quasi-linear Schrödinger equation via dual approach\",\"authors\":\"Lin Zhang, Yongqing Li, Zhi-Qiang Wang\",\"doi\":\"10.12775/tmna.2022.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct multiple normalized solutions of the following from quasi-linear Schrödinger equation:\\n\\n-\\\\Delta u-\\\\Delta(|u|^{2})u-\\\\mu u=|u|^{p-2}u, \\\\quad\\\\text{in } \\\\mathbb{R}^N,\\n\\nsubject to a mass-subcritical constraint. In order to overcome non-smoothness of the associated variational formulation we make use of the dual approach.\\nThe constructed solutions possess energies being clustered at $0$ level which makes it difficult to use existing methods \\nfor non-smooth variational problems such as the variational perturbation approach.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们从拟线性Schrödinger方程构造了以下方程的多重归一化解:-\Delta u-\Delta(|u|^{2})u-\mu u=|u|^{p-2}u,quad\text{in}\mathbb{R}^N,受质量亚临界约束。为了克服相关变分公式的非光滑性,我们使用对偶方法。构造的解具有聚集在$0$水平的能量,这使得很难使用现有的方法来处理非光滑变分问题,例如变分摄动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiple normalized solutions for a quasi-linear Schrödinger equation via dual approach
In this paper, we construct multiple normalized solutions of the following from quasi-linear Schrödinger equation: -\Delta u-\Delta(|u|^{2})u-\mu u=|u|^{p-2}u, \quad\text{in } \mathbb{R}^N, subject to a mass-subcritical constraint. In order to overcome non-smoothness of the associated variational formulation we make use of the dual approach. The constructed solutions possess energies being clustered at $0$ level which makes it difficult to use existing methods for non-smooth variational problems such as the variational perturbation approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信