Hurwitz函数的联合加权通用性

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Laurinčikas, G. Vadeikis
{"title":"Hurwitz函数的联合加权通用性","authors":"A. Laurinčikas, G. Vadeikis","doi":"10.1090/spmj/1712","DOIUrl":null,"url":null,"abstract":"<p>Joint weighted universality theorems are proved concerning simultaneous approximation of a collection of analytic functions by a collection of shifts of Hurwitz zeta-functions with parameters <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha 1 comma ellipsis comma alpha Subscript r Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>r</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _1,\\dots ,\\alpha _r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For this, linear independence is required over the field of rational numbers for the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace log left-parenthesis m plus alpha Subscript j Baseline right-parenthesis colon m element-of double-struck upper N 0 equals double-struck upper N union StartSet 0 EndSet comma j equals 1 comma ellipsis comma r right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>log</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo>:</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi>m</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:mo>∪<!-- ∪ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"thickmathspace\" />\n <mml:mi>j</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\{\\log (m+\\alpha _j)\\,:\\, m\\in \\mathbb {N}_0=\\mathbb {N}\\cup \\{0\\},\\;j=1,\\dots ,r\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint weighted universality of the Hurwitz zeta-functions\",\"authors\":\"A. Laurinčikas, G. Vadeikis\",\"doi\":\"10.1090/spmj/1712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Joint weighted universality theorems are proved concerning simultaneous approximation of a collection of analytic functions by a collection of shifts of Hurwitz zeta-functions with parameters <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha 1 comma ellipsis comma alpha Subscript r Baseline\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mo>…<!-- … --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mi>r</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha _1,\\\\dots ,\\\\alpha _r</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. For this, linear independence is required over the field of rational numbers for the set <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-brace log left-parenthesis m plus alpha Subscript j Baseline right-parenthesis colon m element-of double-struck upper N 0 equals double-struck upper N union StartSet 0 EndSet comma j equals 1 comma ellipsis comma r right-brace\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mi>log</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mi>j</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mo>:</mml:mo>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mi>m</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>=</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:mo>∪<!-- ∪ --></mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mspace width=\\\"thickmathspace\\\" />\\n <mml:mi>j</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mo>…<!-- … --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\{\\\\log (m+\\\\alpha _j)\\\\,:\\\\, m\\\\in \\\\mathbb {N}_0=\\\\mathbb {N}\\\\cup \\\\{0\\\\},\\\\;j=1,\\\\dots ,r\\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1712\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1712","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

通过参数为α1,…,αr\α_1,\dots,\alpha_r的Hurwitzζ函数的一组移位,证明了关于一组解析函数的同时逼近的联合加权普遍性定理。为此,集合{log的有理数域上需要线性独立性⁡ (m+αj):m∈N 0=Nõ{0},j=1,…,r}\{\log(m+\alpha_j)\,:\,m\in\mathbb{N}_0=\mathbb{N}\cup \{0\},\;j=1,\dots,r\}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint weighted universality of the Hurwitz zeta-functions

Joint weighted universality theorems are proved concerning simultaneous approximation of a collection of analytic functions by a collection of shifts of Hurwitz zeta-functions with parameters α 1 , , α r \alpha _1,\dots ,\alpha _r . For this, linear independence is required over the field of rational numbers for the set { log ( m + α j ) : m N 0 = N { 0 } , j = 1 , , r } \{\log (m+\alpha _j)\,:\, m\in \mathbb {N}_0=\mathbb {N}\cup \{0\},\;j=1,\dots ,r\} .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信