Rho-GTPase调节蛋白对足细胞形态和功能的影响

Emily Foxman, S. Ibrahim, T. Takano
{"title":"Rho-GTPase调节蛋白对足细胞形态和功能的影响","authors":"Emily Foxman, S. Ibrahim, T. Takano","doi":"10.26443/msurj.v18i1.193","DOIUrl":null,"url":null,"abstract":"Podocytes are a critical cellular component of the glomerular filtration barrier, whose strict permselectivity prohibits the passage of large proteins and charged species into the urine. Phenotypic variability or injury of these highly specialized cells can lead to proteinuria and has been linked with altered activity of Rho GTPases, which are strongly associated with the actin cytoskeleton. Notable regulators of these intracellular molecular switches are called guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). In this study, the roles of several GEFs in podocyte morphology and activity were investigated, including ECT2, ARHGEF2, ARHGEF26, and ARHGEF40. Results from RhoA and Rac1 G-LISA Activation Assays indicated that the absence of ARHGEF40 impairs epidermal growth factor (EGF)-stimulated RhoA and Rac1 activation, whereas knockout of ARHGEF2 and ARHGEF26 may selectively diminish RhoA activation. Furthermore, filopodia formation was hindered for the ARHGEF40 knockout. There are a number of additional investigations underway to understand Rho GTPase regulatory proteins, including the elimination of new sets of GEFs and GAPs in vivo. It is hopeful that these studies can provide insights into potential novel therapeutic strategies for proteinuria.","PeriodicalId":91927,"journal":{"name":"McGill Science undergraduate research journal : MSURJ","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rho GTPase regulatory proteins contribute to podocyte morphology and function\",\"authors\":\"Emily Foxman, S. Ibrahim, T. Takano\",\"doi\":\"10.26443/msurj.v18i1.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Podocytes are a critical cellular component of the glomerular filtration barrier, whose strict permselectivity prohibits the passage of large proteins and charged species into the urine. Phenotypic variability or injury of these highly specialized cells can lead to proteinuria and has been linked with altered activity of Rho GTPases, which are strongly associated with the actin cytoskeleton. Notable regulators of these intracellular molecular switches are called guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). In this study, the roles of several GEFs in podocyte morphology and activity were investigated, including ECT2, ARHGEF2, ARHGEF26, and ARHGEF40. Results from RhoA and Rac1 G-LISA Activation Assays indicated that the absence of ARHGEF40 impairs epidermal growth factor (EGF)-stimulated RhoA and Rac1 activation, whereas knockout of ARHGEF2 and ARHGEF26 may selectively diminish RhoA activation. Furthermore, filopodia formation was hindered for the ARHGEF40 knockout. There are a number of additional investigations underway to understand Rho GTPase regulatory proteins, including the elimination of new sets of GEFs and GAPs in vivo. It is hopeful that these studies can provide insights into potential novel therapeutic strategies for proteinuria.\",\"PeriodicalId\":91927,\"journal\":{\"name\":\"McGill Science undergraduate research journal : MSURJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"McGill Science undergraduate research journal : MSURJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26443/msurj.v18i1.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"McGill Science undergraduate research journal : MSURJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26443/msurj.v18i1.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

足细胞是肾小球滤过屏障的关键细胞成分,其严格的过电选择性阻止大蛋白和带电物质进入尿液。这些高度特化细胞的表型变异或损伤可导致蛋白尿,并与Rho gtpase活性改变有关,Rho gtpase与肌动蛋白细胞骨架密切相关。这些细胞内分子开关的重要调节因子被称为鸟嘌呤核苷酸交换因子(GEFs), gtpase激活蛋白(GAPs)和鸟嘌呤核苷酸解离抑制剂(gdi)。在本研究中,我们研究了几种gef在足细胞形态和活性中的作用,包括ECT2、ARHGEF2、ARHGEF26和ARHGEF40。RhoA和Rac1 G-LISA激活实验结果表明,ARHGEF40的缺失会损害表皮生长因子(EGF)刺激的RhoA和Rac1的激活,而敲除ARHGEF2和ARHGEF26可能会选择性地降低RhoA的激活。此外,ARHGEF40基因敲除也阻碍了丝状足的形成。还有许多其他的研究正在进行中,以了解Rho GTPase调节蛋白,包括消除体内新的gef和gap。这些研究有望为蛋白尿的潜在新治疗策略提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rho GTPase regulatory proteins contribute to podocyte morphology and function
Podocytes are a critical cellular component of the glomerular filtration barrier, whose strict permselectivity prohibits the passage of large proteins and charged species into the urine. Phenotypic variability or injury of these highly specialized cells can lead to proteinuria and has been linked with altered activity of Rho GTPases, which are strongly associated with the actin cytoskeleton. Notable regulators of these intracellular molecular switches are called guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). In this study, the roles of several GEFs in podocyte morphology and activity were investigated, including ECT2, ARHGEF2, ARHGEF26, and ARHGEF40. Results from RhoA and Rac1 G-LISA Activation Assays indicated that the absence of ARHGEF40 impairs epidermal growth factor (EGF)-stimulated RhoA and Rac1 activation, whereas knockout of ARHGEF2 and ARHGEF26 may selectively diminish RhoA activation. Furthermore, filopodia formation was hindered for the ARHGEF40 knockout. There are a number of additional investigations underway to understand Rho GTPase regulatory proteins, including the elimination of new sets of GEFs and GAPs in vivo. It is hopeful that these studies can provide insights into potential novel therapeutic strategies for proteinuria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信