{"title":"米曲霉和贝克酵母对水溶液中Cu2+的生物吸附","authors":"Rachna Sinha, G. Chauhan, A. Singh, Arinjay Kumar","doi":"10.18311/JSST/2019/22306","DOIUrl":null,"url":null,"abstract":"Present work evaluates the ability of Aspergillus oryzae and commercial dry Baker's yeast to effectively remove Cu2+ ions from aqueous solutions. Batch experiments were carried out in order to analyze sorption behavior of metal-sorbent system at different biosorbent dosage, and initial metal concentration. Various pre-treatment methods were adopted to modify the biomass, and effect of pre-treatment was investigated on biosorption efficiency. Till now, very few efforts are dedicated for application of immobilized biosorbents in literature therefore further investigations were done on the biosorption efficiency of biomass immobilized in a natural matrix which might augment stability, mechanical strength, and reusability of the biomass. Approximately 86 and 95% biosorption of copper was attained under optimum reaction conditions using Loofah immobilized with Baker's yeast, and A. oryzae, respectively. Desorption efficiency of the immobilized biomass was evaluated by performing successive biosorption-desorption cycles. Successful regeneration of Loofah sponge loaded with immobilized biosorbent was illustrated by desorbing more than 95% copper. Characterization studies were performed to examine the changes in surface morphology, and surface chemistry before and after adsorption.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosorption of Cu2+ from Aqueous Solution using Aspergillus oryzae and Baker's Yeast\",\"authors\":\"Rachna Sinha, G. Chauhan, A. Singh, Arinjay Kumar\",\"doi\":\"10.18311/JSST/2019/22306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present work evaluates the ability of Aspergillus oryzae and commercial dry Baker's yeast to effectively remove Cu2+ ions from aqueous solutions. Batch experiments were carried out in order to analyze sorption behavior of metal-sorbent system at different biosorbent dosage, and initial metal concentration. Various pre-treatment methods were adopted to modify the biomass, and effect of pre-treatment was investigated on biosorption efficiency. Till now, very few efforts are dedicated for application of immobilized biosorbents in literature therefore further investigations were done on the biosorption efficiency of biomass immobilized in a natural matrix which might augment stability, mechanical strength, and reusability of the biomass. Approximately 86 and 95% biosorption of copper was attained under optimum reaction conditions using Loofah immobilized with Baker's yeast, and A. oryzae, respectively. Desorption efficiency of the immobilized biomass was evaluated by performing successive biosorption-desorption cycles. Successful regeneration of Loofah sponge loaded with immobilized biosorbent was illustrated by desorbing more than 95% copper. Characterization studies were performed to examine the changes in surface morphology, and surface chemistry before and after adsorption.\",\"PeriodicalId\":17031,\"journal\":{\"name\":\"Journal of Surface Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JSST/2019/22306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2019/22306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Biosorption of Cu2+ from Aqueous Solution using Aspergillus oryzae and Baker's Yeast
Present work evaluates the ability of Aspergillus oryzae and commercial dry Baker's yeast to effectively remove Cu2+ ions from aqueous solutions. Batch experiments were carried out in order to analyze sorption behavior of metal-sorbent system at different biosorbent dosage, and initial metal concentration. Various pre-treatment methods were adopted to modify the biomass, and effect of pre-treatment was investigated on biosorption efficiency. Till now, very few efforts are dedicated for application of immobilized biosorbents in literature therefore further investigations were done on the biosorption efficiency of biomass immobilized in a natural matrix which might augment stability, mechanical strength, and reusability of the biomass. Approximately 86 and 95% biosorption of copper was attained under optimum reaction conditions using Loofah immobilized with Baker's yeast, and A. oryzae, respectively. Desorption efficiency of the immobilized biomass was evaluated by performing successive biosorption-desorption cycles. Successful regeneration of Loofah sponge loaded with immobilized biosorbent was illustrated by desorbing more than 95% copper. Characterization studies were performed to examine the changes in surface morphology, and surface chemistry before and after adsorption.
期刊介绍:
The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction