Łukasz Lindstedt, M. Rodzewicz, C. Rzymkowski, K. Kędzior
{"title":"复合材料滑翔机座舱冲击载荷与碰撞安全性研究","authors":"Łukasz Lindstedt, M. Rodzewicz, C. Rzymkowski, K. Kędzior","doi":"10.2478/fas-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract One major problem associated with gliding is the safety of the crew during landings in the country outside the airfield. The analysis of glider-accident statistics shows that such out-landings may significantly influence the safety. Therefore, of vital importance are the crashworthiness properties of the glider fuselage structure. The subject of the study was the PW-5 glider fuselage made of composites and subjected to high loads typical of glider crashes. The aim was to provide experimental data for validation of a numerical model of the cockpit-pilot system during impact. Two experimental tests with the composite glider cockpit were performed using a typical car-crash track. During the first test the cockpit with a dummy inside was crashed onto the ground at the angle of 45 degrees at a speed of 55 km/h. Accelerations and deformations at chosen points in the cockpit as well as signals coming from the dummy sensors and forces in the seat belts were recorded. The second test was an impact into a concrete wall at a speed of about 80 km/h. The full-scale tests were accompanied by a number of quasi-static and dynamic laboratory tests on samples of composite material. The experimental tests provided valuable results for the parametrical identification of a simulation model developed using the MADYMO software.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2019 1","pages":"39 - 55"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact Loads and Crash Safety of the Cockpit of a Composite Glider\",\"authors\":\"Łukasz Lindstedt, M. Rodzewicz, C. Rzymkowski, K. Kędzior\",\"doi\":\"10.2478/fas-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One major problem associated with gliding is the safety of the crew during landings in the country outside the airfield. The analysis of glider-accident statistics shows that such out-landings may significantly influence the safety. Therefore, of vital importance are the crashworthiness properties of the glider fuselage structure. The subject of the study was the PW-5 glider fuselage made of composites and subjected to high loads typical of glider crashes. The aim was to provide experimental data for validation of a numerical model of the cockpit-pilot system during impact. Two experimental tests with the composite glider cockpit were performed using a typical car-crash track. During the first test the cockpit with a dummy inside was crashed onto the ground at the angle of 45 degrees at a speed of 55 km/h. Accelerations and deformations at chosen points in the cockpit as well as signals coming from the dummy sensors and forces in the seat belts were recorded. The second test was an impact into a concrete wall at a speed of about 80 km/h. The full-scale tests were accompanied by a number of quasi-static and dynamic laboratory tests on samples of composite material. The experimental tests provided valuable results for the parametrical identification of a simulation model developed using the MADYMO software.\",\"PeriodicalId\":37629,\"journal\":{\"name\":\"Fatigue of Aircraft Structures\",\"volume\":\"2019 1\",\"pages\":\"39 - 55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue of Aircraft Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fas-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Impact Loads and Crash Safety of the Cockpit of a Composite Glider
Abstract One major problem associated with gliding is the safety of the crew during landings in the country outside the airfield. The analysis of glider-accident statistics shows that such out-landings may significantly influence the safety. Therefore, of vital importance are the crashworthiness properties of the glider fuselage structure. The subject of the study was the PW-5 glider fuselage made of composites and subjected to high loads typical of glider crashes. The aim was to provide experimental data for validation of a numerical model of the cockpit-pilot system during impact. Two experimental tests with the composite glider cockpit were performed using a typical car-crash track. During the first test the cockpit with a dummy inside was crashed onto the ground at the angle of 45 degrees at a speed of 55 km/h. Accelerations and deformations at chosen points in the cockpit as well as signals coming from the dummy sensors and forces in the seat belts were recorded. The second test was an impact into a concrete wall at a speed of about 80 km/h. The full-scale tests were accompanied by a number of quasi-static and dynamic laboratory tests on samples of composite material. The experimental tests provided valuable results for the parametrical identification of a simulation model developed using the MADYMO software.
期刊介绍:
The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.