无机钙钛矿太阳能电池CsPbBr3晶体生长两步法的热力学分析

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Xihong Ding, Demeng Qian, Haibin Chen, Zhibin Wang, Kaijie Fang
{"title":"无机钙钛矿太阳能电池CsPbBr3晶体生长两步法的热力学分析","authors":"Xihong Ding, Demeng Qian, Haibin Chen, Zhibin Wang, Kaijie Fang","doi":"10.1166/jno.2023.3424","DOIUrl":null,"url":null,"abstract":"We conducted integrated thermodynamic analyses for the two-step method of CsPbBr3 growth. Deriving from Gibbs free energy and heterogeneous nucleation theory, a thermodynamic reaction model equation was proposed and verified, from which we could find that the grainsizes of\n the CsPbBr3 can be precisely controlled by the CsBr concentration. The impact of temperature of the solvent was also studied. Finally, a best cell was fabricated showing a power conversion efficiency of 4.75%, with open circuit voltage of 1.13 V, short circuit current of 6.68 mA/cm2\n and fill factor of 63%. Our results will help other researchers to determine the appropriate condition of the growth of CsPbBr3 by the two-step method.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Analyses of the Two-Step Method of CsPbBr3 Crystal Growth for Inorganic Perovskite Solar Cells\",\"authors\":\"Xihong Ding, Demeng Qian, Haibin Chen, Zhibin Wang, Kaijie Fang\",\"doi\":\"10.1166/jno.2023.3424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conducted integrated thermodynamic analyses for the two-step method of CsPbBr3 growth. Deriving from Gibbs free energy and heterogeneous nucleation theory, a thermodynamic reaction model equation was proposed and verified, from which we could find that the grainsizes of\\n the CsPbBr3 can be precisely controlled by the CsBr concentration. The impact of temperature of the solvent was also studied. Finally, a best cell was fabricated showing a power conversion efficiency of 4.75%, with open circuit voltage of 1.13 V, short circuit current of 6.68 mA/cm2\\n and fill factor of 63%. Our results will help other researchers to determine the appropriate condition of the growth of CsPbBr3 by the two-step method.\",\"PeriodicalId\":16446,\"journal\":{\"name\":\"Journal of Nanoelectronics and Optoelectronics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoelectronics and Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jno.2023.3424\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2023.3424","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们对CsPbBr3的两步法生长进行了综合热力学分析。从吉布斯自由能和非均相成核理论出发,提出了CsPbBr3的热力学反应模型方程,并进行了验证,发现CsPbBr3的晶粒尺寸可以由CsBr的浓度精确控制。研究了溶剂温度的影响。最终制备出最佳电池,其功率转换效率为4.75%,开路电压为1.13 V,短路电流为6.68 mA/cm2,填充系数为63%。我们的结果将有助于其他研究者通过两步法确定CsPbBr3的适宜生长条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic Analyses of the Two-Step Method of CsPbBr3 Crystal Growth for Inorganic Perovskite Solar Cells
We conducted integrated thermodynamic analyses for the two-step method of CsPbBr3 growth. Deriving from Gibbs free energy and heterogeneous nucleation theory, a thermodynamic reaction model equation was proposed and verified, from which we could find that the grainsizes of the CsPbBr3 can be precisely controlled by the CsBr concentration. The impact of temperature of the solvent was also studied. Finally, a best cell was fabricated showing a power conversion efficiency of 4.75%, with open circuit voltage of 1.13 V, short circuit current of 6.68 mA/cm2 and fill factor of 63%. Our results will help other researchers to determine the appropriate condition of the growth of CsPbBr3 by the two-step method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信