Saguedo Sawadogo, D. A. Gnabahou, Sibri Alphonse Sandwidi, F. Ouattara
{"title":"Koudougou(布基纳法索,非洲),GPS-TEC对太阳周期24衰退期复发地磁风暴的响应","authors":"Saguedo Sawadogo, D. A. Gnabahou, Sibri Alphonse Sandwidi, F. Ouattara","doi":"10.1155/2023/4181389","DOIUrl":null,"url":null,"abstract":"In this paper, we presented the effect of moderate geomagnetic storms on the TEC variation at the Koudougou station (Geo Lat 12° 15\n \n ′\n \n N; Geo Long: -2° 20\n \n ′\n \n E) in Burkina Faso (Africa) during the descending phase of solar cycle 24. For this purpose, four moderate geomagnetic storms without storm sudden commencement (SSC) or sudden impulse (SI) that occurred on May 13, 2015 (Dst: -76 nT), June 08, 2015 (Dst: -73 nT), September 11, 2015 (Dst: -80 nT), and May 08-09, 2016 (Dst: -88nT), were considered. These moderate storms were found to be associated with transients induced by fast solar winds. At the Koudougou station, TEC variation shows a positive response to the different moderate geomagnetic storms studied, with increases of order of 2-21 TECU around 1300-1500 UT except for September 11, 2015, TEC variation which shows sometimes negative responses at a few hours (mainly at night). TEC increases observed are a function of geomagnetic parameter (magnitude and polarity) variation. Storm-induced electric field and neutral winds are the main drivers of TEC changes observed during the selected geomagnetic storms. In addition, it was found that the TEC peak on storm day behaves differently compared to the days before and after the storm depending on whether Dst is positive or negative before southward inversion. Indeed, a TEC small peak relative to the days before and after the storm is observed when Dst is negative before southward inversion, and a larger peak occurs in the opposite case. The reasons for these differences are not investigated in this paper.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Koudougou (Burkina Faso, Africa), GPS-TEC Response to Recurrent Geomagnetic Storms during Solar Cycle 24 Declining Phase\",\"authors\":\"Saguedo Sawadogo, D. A. Gnabahou, Sibri Alphonse Sandwidi, F. Ouattara\",\"doi\":\"10.1155/2023/4181389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we presented the effect of moderate geomagnetic storms on the TEC variation at the Koudougou station (Geo Lat 12° 15\\n \\n ′\\n \\n N; Geo Long: -2° 20\\n \\n ′\\n \\n E) in Burkina Faso (Africa) during the descending phase of solar cycle 24. For this purpose, four moderate geomagnetic storms without storm sudden commencement (SSC) or sudden impulse (SI) that occurred on May 13, 2015 (Dst: -76 nT), June 08, 2015 (Dst: -73 nT), September 11, 2015 (Dst: -80 nT), and May 08-09, 2016 (Dst: -88nT), were considered. These moderate storms were found to be associated with transients induced by fast solar winds. At the Koudougou station, TEC variation shows a positive response to the different moderate geomagnetic storms studied, with increases of order of 2-21 TECU around 1300-1500 UT except for September 11, 2015, TEC variation which shows sometimes negative responses at a few hours (mainly at night). TEC increases observed are a function of geomagnetic parameter (magnitude and polarity) variation. Storm-induced electric field and neutral winds are the main drivers of TEC changes observed during the selected geomagnetic storms. In addition, it was found that the TEC peak on storm day behaves differently compared to the days before and after the storm depending on whether Dst is positive or negative before southward inversion. Indeed, a TEC small peak relative to the days before and after the storm is observed when Dst is negative before southward inversion, and a larger peak occurs in the opposite case. The reasons for these differences are not investigated in this paper.\",\"PeriodicalId\":45602,\"journal\":{\"name\":\"International Journal of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4181389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4181389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Koudougou (Burkina Faso, Africa), GPS-TEC Response to Recurrent Geomagnetic Storms during Solar Cycle 24 Declining Phase
In this paper, we presented the effect of moderate geomagnetic storms on the TEC variation at the Koudougou station (Geo Lat 12° 15
′
N; Geo Long: -2° 20
′
E) in Burkina Faso (Africa) during the descending phase of solar cycle 24. For this purpose, four moderate geomagnetic storms without storm sudden commencement (SSC) or sudden impulse (SI) that occurred on May 13, 2015 (Dst: -76 nT), June 08, 2015 (Dst: -73 nT), September 11, 2015 (Dst: -80 nT), and May 08-09, 2016 (Dst: -88nT), were considered. These moderate storms were found to be associated with transients induced by fast solar winds. At the Koudougou station, TEC variation shows a positive response to the different moderate geomagnetic storms studied, with increases of order of 2-21 TECU around 1300-1500 UT except for September 11, 2015, TEC variation which shows sometimes negative responses at a few hours (mainly at night). TEC increases observed are a function of geomagnetic parameter (magnitude and polarity) variation. Storm-induced electric field and neutral winds are the main drivers of TEC changes observed during the selected geomagnetic storms. In addition, it was found that the TEC peak on storm day behaves differently compared to the days before and after the storm depending on whether Dst is positive or negative before southward inversion. Indeed, a TEC small peak relative to the days before and after the storm is observed when Dst is negative before southward inversion, and a larger peak occurs in the opposite case. The reasons for these differences are not investigated in this paper.
期刊介绍:
International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.