{"title":"bou<s:1> - dupuis公式与高斯空间中的指数超收缩性","authors":"Yuu Hariya, S. Watanabe","doi":"10.1214/22-ECP461","DOIUrl":null,"url":null,"abstract":"This paper concerns a variational representation formula for Wiener functionals. Let B = { B t } t ≥ 0 be a standard d -dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F ( B ) of B up to time 1 , the expectation E (cid:104) e F ( B ) (cid:105) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F ( B ) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both e F ( B ) and F ( B ) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in R d , and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d -dimensional Gaussian space.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Boué–Dupuis formula and the exponential hypercontractivity in the Gaussian space\",\"authors\":\"Yuu Hariya, S. Watanabe\",\"doi\":\"10.1214/22-ECP461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns a variational representation formula for Wiener functionals. Let B = { B t } t ≥ 0 be a standard d -dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F ( B ) of B up to time 1 , the expectation E (cid:104) e F ( B ) (cid:105) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F ( B ) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both e F ( B ) and F ( B ) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in R d , and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d -dimensional Gaussian space.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ECP461\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ECP461","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
摘要
本文讨论了维纳泛函的一个变分表示公式。设B = {B t} t≥0为标准d维布朗运动。bouboure和Dupuis(1998)表明,对于任何有界的可测泛函F (B),对于时间1,期望E (cid:104) E F (B) (cid:105)允许在漂移布朗运动方面的变分表示。在本文中,对Lehec(2013)的深刻推理稍加修改,允许F (B)也是B在整个时间区间内的泛函,我们证明了在e F (B)和F (B)都是可积的松弛条件下,bou - dupuis公式成立。我们还证明了该公式暗示了R d中Ornstein-Uhlenbeck半群的指数超收缩性,因此,由于它们的等价性,暗示了d维高斯空间中的对数Sobolev不等式。
The Boué–Dupuis formula and the exponential hypercontractivity in the Gaussian space
This paper concerns a variational representation formula for Wiener functionals. Let B = { B t } t ≥ 0 be a standard d -dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F ( B ) of B up to time 1 , the expectation E (cid:104) e F ( B ) (cid:105) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F ( B ) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both e F ( B ) and F ( B ) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in R d , and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d -dimensional Gaussian space.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.