稳态空间中类空间超平面的新性质

Pub Date : 2020-03-29 DOI:10.7146/math.scand.a-117703
C. Aquino, H. Baltazar, H. Lima
{"title":"稳态空间中类空间超平面的新性质","authors":"C. Aquino, H. Baltazar, H. Lima","doi":"10.7146/math.scand.a-117703","DOIUrl":null,"url":null,"abstract":"In this article, we deal with complete spacelike hypersurfaces immersed in an open region of the de Sitter space Sn+11 which is known as the steady state space Hn+1. Under suitable constraints on the behavior of the higher order mean curvatures of these hypersurfaces, we are able to prove that they must be spacelike hyperplanes of Hn+1. Furthermore, through the analysis of the hyperbolic cylinders of Hn+1, we discuss the importance of the main hypothesis in our results. Our approach is based on a generalized maximum principle at infinity for complete Riemannian manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New characterizations of spacelike hyperplanes in the steady state space\",\"authors\":\"C. Aquino, H. Baltazar, H. Lima\",\"doi\":\"10.7146/math.scand.a-117703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we deal with complete spacelike hypersurfaces immersed in an open region of the de Sitter space Sn+11 which is known as the steady state space Hn+1. Under suitable constraints on the behavior of the higher order mean curvatures of these hypersurfaces, we are able to prove that they must be spacelike hyperplanes of Hn+1. Furthermore, through the analysis of the hyperbolic cylinders of Hn+1, we discuss the importance of the main hypothesis in our results. Our approach is based on a generalized maximum principle at infinity for complete Riemannian manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-117703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-117703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们处理了浸入de Sitter空间Sn+11的开放区域中的完全类空超曲面,该开放区域被称为稳态空间Hn+1。在这些超曲面的高阶平均曲率行为的适当约束下,我们能够证明它们一定是Hn+1的类空间超平面。此外,通过对Hn+1的双曲柱面的分析,我们讨论了主要假设在我们的结果中的重要性。我们的方法是基于完全黎曼流形无穷大的广义极大值原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
New characterizations of spacelike hyperplanes in the steady state space
In this article, we deal with complete spacelike hypersurfaces immersed in an open region of the de Sitter space Sn+11 which is known as the steady state space Hn+1. Under suitable constraints on the behavior of the higher order mean curvatures of these hypersurfaces, we are able to prove that they must be spacelike hyperplanes of Hn+1. Furthermore, through the analysis of the hyperbolic cylinders of Hn+1, we discuss the importance of the main hypothesis in our results. Our approach is based on a generalized maximum principle at infinity for complete Riemannian manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信