R2中涉及临界指数增长的周期椭圆型问题的凹摄动

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaoyan Lin, Xianhua Tang
{"title":"R2中涉及临界指数增长的周期椭圆型问题的凹摄动","authors":"Xiaoyan Lin, Xianhua Tang","doi":"10.1515/anona-2022-0257","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\\Delta u+V\\left(x)u=f\\left(x,u)+\\lambda a\\left(x)| u{| }^{q-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{2}, where λ > 0 \\lambda \\gt 0 , q ∈ ( 1 , 2 ) q\\in \\left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\\in {L}^{2\\text{/}\\left(2-q)}\\left({{\\mathbb{R}}}^{2}) , V ( x ) V\\left(x) , and f ( x , t ) f\\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\\left(x,t) has critical exponential growth at t = ∞ t=\\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \\lambda \\gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On concave perturbations of a periodic elliptic problem in R2 involving critical exponential growth\",\"authors\":\"Xiaoyan Lin, Xianhua Tang\",\"doi\":\"10.1515/anona-2022-0257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\\\\Delta u+V\\\\left(x)u=f\\\\left(x,u)+\\\\lambda a\\\\left(x)| u{| }^{q-2}u,\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{2}, where λ > 0 \\\\lambda \\\\gt 0 , q ∈ ( 1 , 2 ) q\\\\in \\\\left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\\\\in {L}^{2\\\\text{/}\\\\left(2-q)}\\\\left({{\\\\mathbb{R}}}^{2}) , V ( x ) V\\\\left(x) , and f ( x , t ) f\\\\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\\\\left(x,t) has critical exponential growth at t = ∞ t=\\\\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \\\\lambda \\\\gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0257\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0257","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文考虑了形式为(0.1)−Δ u + V (x) u = f (x, u) + λ a (x)∣u∣q−2 u, x∈r2, -的非线性椭圆方程解的存在性\Delta u+V\leftu=f\left(x,u)+\lambda a\left(x)| u{| }^{q-2}你,\hspace{1em}x\in {{\mathbb{R}}}^{2},其中λ > 0 \lambda \gt 0, q∈(1,2)q\in \left(1,2), a∈l2 /(2−q) (r2) a\in {l}^{2\text{/}\left(2-q)}\left({{\mathbb{R}}}^{2}), V (x) V\left(x) f (x, t) f\left(x,t)是关于x x的1周期函数,f (x,t) f\left(x,t)在t=∞处具有临界指数增长\infty 。结合变分方法、Trudinger-Moser不等式和一些新的技术,详细估计了能量泛函的极大极小水平,证明了上述方程在一些弱假设下的非平凡解的存在性。我们的结果表明,凹项(即λ > 0)的存在 \lambda \gt 0)在某种意义上对方程(0.1)非平凡解的存在性有很大帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On concave perturbations of a periodic elliptic problem in R2 involving critical exponential growth
Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\Delta u+V\left(x)u=f\left(x,u)+\lambda a\left(x)| u{| }^{q-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{2}, where λ > 0 \lambda \gt 0 , q ∈ ( 1 , 2 ) q\in \left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\in {L}^{2\text{/}\left(2-q)}\left({{\mathbb{R}}}^{2}) , V ( x ) V\left(x) , and f ( x , t ) f\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\left(x,t) has critical exponential growth at t = ∞ t=\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \lambda \gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信