{"title":"固体沉积物对钛在高酸性和高氧化性浸出溶液中腐蚀行为的影响","authors":"Yu Liu, E. Asselin","doi":"10.1080/1478422X.2022.2149048","DOIUrl":null,"url":null,"abstract":"ABSTRACT Solid minerals are ubiquitous and common deposits on Ti-lined process vessels in the hydrometallurgical industry. This work revealed the effects of inert solid deposits on the corrosion behaviour of Ti-2 in high acidity and highly oxidising leaching solutions. It was found that the deposit-covered Ti-2 had a higher corrosion rate (CR) than bare Ti-2. CR increased with increasing deposit thickness (up to 6 cm) and temperature. Solid deposits mainly affected the corrosion process of Ti by limiting the mass transfer of the oxidising Fe(III) from the bulk solution to the underlying Ti, thus affecting the stability of the protective passive film, and resulting in an accelerated passive CR. High temperatures and solid deposition are both commonly encountered in the hydrometallurgical industry, and their combination may significantly limit the maximum service temperature of Ti-equipment, implying that there is a risk in using Ti-components under such conditions.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"108 - 115"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of solid deposits on the corrosion behaviour of titanium in high acidity and highly oxidising leaching solutions\",\"authors\":\"Yu Liu, E. Asselin\",\"doi\":\"10.1080/1478422X.2022.2149048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Solid minerals are ubiquitous and common deposits on Ti-lined process vessels in the hydrometallurgical industry. This work revealed the effects of inert solid deposits on the corrosion behaviour of Ti-2 in high acidity and highly oxidising leaching solutions. It was found that the deposit-covered Ti-2 had a higher corrosion rate (CR) than bare Ti-2. CR increased with increasing deposit thickness (up to 6 cm) and temperature. Solid deposits mainly affected the corrosion process of Ti by limiting the mass transfer of the oxidising Fe(III) from the bulk solution to the underlying Ti, thus affecting the stability of the protective passive film, and resulting in an accelerated passive CR. High temperatures and solid deposition are both commonly encountered in the hydrometallurgical industry, and their combination may significantly limit the maximum service temperature of Ti-equipment, implying that there is a risk in using Ti-components under such conditions.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"58 1\",\"pages\":\"108 - 115\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2022.2149048\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2022.2149048","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of solid deposits on the corrosion behaviour of titanium in high acidity and highly oxidising leaching solutions
ABSTRACT Solid minerals are ubiquitous and common deposits on Ti-lined process vessels in the hydrometallurgical industry. This work revealed the effects of inert solid deposits on the corrosion behaviour of Ti-2 in high acidity and highly oxidising leaching solutions. It was found that the deposit-covered Ti-2 had a higher corrosion rate (CR) than bare Ti-2. CR increased with increasing deposit thickness (up to 6 cm) and temperature. Solid deposits mainly affected the corrosion process of Ti by limiting the mass transfer of the oxidising Fe(III) from the bulk solution to the underlying Ti, thus affecting the stability of the protective passive film, and resulting in an accelerated passive CR. High temperatures and solid deposition are both commonly encountered in the hydrometallurgical industry, and their combination may significantly limit the maximum service temperature of Ti-equipment, implying that there is a risk in using Ti-components under such conditions.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.