$G_2$和$F_4$及其伴随轨道上的白鸦位置

Q3 Mathematics
M. V. Ignatev, Matvey A. Surkov
{"title":"$G_2$和$F_4$及其伴随轨道上的白鸦位置","authors":"M. V. Ignatev, Matvey A. Surkov","doi":"10.46298/cm.9041","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{n}$ be a maximal nilpotent subalgebra of a simple complex Lie\nalgebra with root system $\\Phi$. A subset $D$ of the set $\\Phi^+$ of positive\nroots is called a rook placement if it consists of roots with pairwise\nnon-positive scalar products. To each rook placement $D$ and each map $\\xi$\nfrom $D$ to the set $\\mathbb{C}^{\\times}$ of nonzero complex numbers one can\nnaturally assign the coadjoint orbit $\\Omega_{D,\\xi}$ in the dual space\n$\\mathfrak{n}^*$. By definition, $\\Omega_{D,\\xi}$ is the orbit of $f_{D,\\xi}$,\nwhere $f_{D,\\xi}$ is the sum of root covectors $e_{\\alpha}^*$ multiplied by\n$\\xi(\\alpha)$, $\\alpha\\in D$. (In fact, almost all coadjoint orbits studied at\nthe moment have such a form for certain $D$ and $\\xi$.) It follows from the\nresults of Andr\\`e that if $\\xi_1$ and $\\xi_2$ are distinct maps from $D$ to\n$\\mathbb{C}^{\\times}$ then $\\Omega_{D,\\xi_1}$ and $\\Omega_{D,\\xi_2}$ do not\ncoincide for classical root systems $\\Phi$. We prove that this is true if\n$\\Phi$ is of type $G_2$, or if $\\Phi$ is of type $F_4$ and $D$ is orthogonal.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rook placements in $G_2$ and $F_4$ and associated coadjoint orbits\",\"authors\":\"M. V. Ignatev, Matvey A. Surkov\",\"doi\":\"10.46298/cm.9041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak{n}$ be a maximal nilpotent subalgebra of a simple complex Lie\\nalgebra with root system $\\\\Phi$. A subset $D$ of the set $\\\\Phi^+$ of positive\\nroots is called a rook placement if it consists of roots with pairwise\\nnon-positive scalar products. To each rook placement $D$ and each map $\\\\xi$\\nfrom $D$ to the set $\\\\mathbb{C}^{\\\\times}$ of nonzero complex numbers one can\\nnaturally assign the coadjoint orbit $\\\\Omega_{D,\\\\xi}$ in the dual space\\n$\\\\mathfrak{n}^*$. By definition, $\\\\Omega_{D,\\\\xi}$ is the orbit of $f_{D,\\\\xi}$,\\nwhere $f_{D,\\\\xi}$ is the sum of root covectors $e_{\\\\alpha}^*$ multiplied by\\n$\\\\xi(\\\\alpha)$, $\\\\alpha\\\\in D$. (In fact, almost all coadjoint orbits studied at\\nthe moment have such a form for certain $D$ and $\\\\xi$.) It follows from the\\nresults of Andr\\\\`e that if $\\\\xi_1$ and $\\\\xi_2$ are distinct maps from $D$ to\\n$\\\\mathbb{C}^{\\\\times}$ then $\\\\Omega_{D,\\\\xi_1}$ and $\\\\Omega_{D,\\\\xi_2}$ do not\\ncoincide for classical root systems $\\\\Phi$. We prove that this is true if\\n$\\\\Phi$ is of type $G_2$, or if $\\\\Phi$ is of type $F_4$ and $D$ is orthogonal.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.9041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.9041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$\mathfrak{n}$为根为$\Phi$的简单复李氏代数的极大幂零子代数。如果正根集合$\Phi^+$的子集$D$由具有对非正标量积的根组成,则称为平车放置。对于每个车位置$D$和从$D$到非零复数集合$\mathbb{C}^{\times}$的每个映射$\xi$,我们自然地在对偶空间$\mathfrak{n}^*$中分配协伴轨道$\Omega_{D,\xi}$。根据定义,$\Omega_{D,\xi}$是$f_{D,\xi}$的轨道,其中$f_{D,\xi}$是根共向量$e_{\alpha}^*$乘以$\xi(\alpha)$, $\alpha\in D$的和。(事实上,目前所研究的几乎所有伴轨道对于$D$和$\xi$都有这样的形式。)从Andrè的结果可以得出,如果$\xi_1$和$\xi_2$是从$D$到$\mathbb{C}^{\times}$的不同映射,那么对于古典根系$\Phi$, $\Omega_{D,\xi_1}$和$\Omega_{D,\xi_2}$并不重合。我们证明如果$\Phi$的类型是$G_2$,或者如果$\Phi$的类型是$F_4$且$D$是正交的,这是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rook placements in $G_2$ and $F_4$ and associated coadjoint orbits
Let $\mathfrak{n}$ be a maximal nilpotent subalgebra of a simple complex Lie algebra with root system $\Phi$. A subset $D$ of the set $\Phi^+$ of positive roots is called a rook placement if it consists of roots with pairwise non-positive scalar products. To each rook placement $D$ and each map $\xi$ from $D$ to the set $\mathbb{C}^{\times}$ of nonzero complex numbers one can naturally assign the coadjoint orbit $\Omega_{D,\xi}$ in the dual space $\mathfrak{n}^*$. By definition, $\Omega_{D,\xi}$ is the orbit of $f_{D,\xi}$, where $f_{D,\xi}$ is the sum of root covectors $e_{\alpha}^*$ multiplied by $\xi(\alpha)$, $\alpha\in D$. (In fact, almost all coadjoint orbits studied at the moment have such a form for certain $D$ and $\xi$.) It follows from the results of Andr\`e that if $\xi_1$ and $\xi_2$ are distinct maps from $D$ to $\mathbb{C}^{\times}$ then $\Omega_{D,\xi_1}$ and $\Omega_{D,\xi_2}$ do not coincide for classical root systems $\Phi$. We prove that this is true if $\Phi$ is of type $G_2$, or if $\Phi$ is of type $F_4$ and $D$ is orthogonal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信