离散时间生态遗传捕食者-被捕食模型的动力学

Q2 Mathematics
D. Mukherjee
{"title":"离散时间生态遗传捕食者-被捕食模型的动力学","authors":"D. Mukherjee","doi":"10.5614/cbms.2022.5.2.5","DOIUrl":null,"url":null,"abstract":"This article considers a discrete-time model of two genetically distinguished predator population and one prey population. The existence and nature of the boundary and positive fixed points are examined. The sufficient criterion for Neimark-Sacker bifurcation (NSB) is derived. It is observed that the system behaves in a chaotic way when a specific set of system parameters is selected, which are controlled by a hybrid control method. Examples are presented to illustrate our conclusions.","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of A Discrete-Time Ecogenetic Predator-Prey Model\",\"authors\":\"D. Mukherjee\",\"doi\":\"10.5614/cbms.2022.5.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers a discrete-time model of two genetically distinguished predator population and one prey population. The existence and nature of the boundary and positive fixed points are examined. The sufficient criterion for Neimark-Sacker bifurcation (NSB) is derived. It is observed that the system behaves in a chaotic way when a specific set of system parameters is selected, which are controlled by a hybrid control method. Examples are presented to illustrate our conclusions.\",\"PeriodicalId\":33129,\"journal\":{\"name\":\"Communication in Biomathematical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communication in Biomathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/cbms.2022.5.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/cbms.2022.5.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了一个离散时间模型的两个遗传区分捕食者群体和一个猎物群体。研究了边界和正不动点的存在性和性质。导出了Neimark-Sacker分岔(NSB)的充分判据。观察到,当选择一组特定的系统参数时,系统表现为混沌,这些参数由混合控制方法控制。举例说明我们的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of A Discrete-Time Ecogenetic Predator-Prey Model
This article considers a discrete-time model of two genetically distinguished predator population and one prey population. The existence and nature of the boundary and positive fixed points are examined. The sufficient criterion for Neimark-Sacker bifurcation (NSB) is derived. It is observed that the system behaves in a chaotic way when a specific set of system parameters is selected, which are controlled by a hybrid control method. Examples are presented to illustrate our conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信