Poisson回归模型中的Jackknifed-Liu型估计

IF 0.1 Q4 STATISTICS & PROBABILITY
Ahmed Alkhateeb, Z. Algamal
{"title":"Poisson回归模型中的Jackknifed-Liu型估计","authors":"Ahmed Alkhateeb, Z. Algamal","doi":"10.29252/jirss.19.1.21","DOIUrl":null,"url":null,"abstract":"The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regression coefficients. To address this problem, a Poisson Liu estimator has been proposed by numerous researchers. In this paper, a Jackknifed Liu-type Poisson estimator (JPLTE) is proposed and derived. The idea behind the JPLTE is to decrease the shrinkage parameter and, therefore, improve the resultant estimator by reducing the amount of bias. Our Monte Carlo simulation results suggest that the JPLTE estimator can bring significant improvements relative to other existing estimators. In addition, the results of a real application demonstrate that the JPLTE estimator outperforms both the Poisson Liu estimator and the maximum likelihood estimator in terms of predictive performance.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"19 1","pages":"21-37"},"PeriodicalIF":0.1000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Jackknifed Liu-type Estimator in Poisson Regression Model\",\"authors\":\"Ahmed Alkhateeb, Z. Algamal\",\"doi\":\"10.29252/jirss.19.1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regression coefficients. To address this problem, a Poisson Liu estimator has been proposed by numerous researchers. In this paper, a Jackknifed Liu-type Poisson estimator (JPLTE) is proposed and derived. The idea behind the JPLTE is to decrease the shrinkage parameter and, therefore, improve the resultant estimator by reducing the amount of bias. Our Monte Carlo simulation results suggest that the JPLTE estimator can bring significant improvements relative to other existing estimators. In addition, the results of a real application demonstrate that the JPLTE estimator outperforms both the Poisson Liu estimator and the maximum likelihood estimator in terms of predictive performance.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\"19 1\",\"pages\":\"21-37\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/jirss.19.1.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jirss.19.1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 18

摘要

刘估计量一直被证明是一种有吸引力的收缩方法,可以减少多重共线性的影响。当响应变量由计数数据组成时,泊松回归模型是应用中众所周知的模型。然而,已知多重共线性对泊松回归系数的最大似然估计量(MLE)的方差产生负面影响。为了解决这个问题,许多研究人员提出了Poisson-Liu估计量。本文提出并推导了一种Jackknifed-Liu型泊松估计器(JPLTE)。JPLTE背后的想法是减少收缩参数,因此,通过减少偏差量来改进结果估计器。我们的蒙特卡罗模拟结果表明,相对于其他现有的估计器,JPLTE估计器可以带来显著的改进。此外,实际应用的结果表明,JPLTE估计器在预测性能方面优于Poisson-Liu估计器和最大似然估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regression coefficients. To address this problem, a Poisson Liu estimator has been proposed by numerous researchers. In this paper, a Jackknifed Liu-type Poisson estimator (JPLTE) is proposed and derived. The idea behind the JPLTE is to decrease the shrinkage parameter and, therefore, improve the resultant estimator by reducing the amount of bias. Our Monte Carlo simulation results suggest that the JPLTE estimator can bring significant improvements relative to other existing estimators. In addition, the results of a real application demonstrate that the JPLTE estimator outperforms both the Poisson Liu estimator and the maximum likelihood estimator in terms of predictive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信