在完美匹配的情况下重新布线动态的截止

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Sam Olesker-Taylor
{"title":"在完美匹配的情况下重新布线动态的截止","authors":"Sam Olesker-Taylor","doi":"10.1214/22-aap1825","DOIUrl":null,"url":null,"abstract":"We establish cutoff for a natural random walk (RW) on the set of perfect matchings (PMs). An $n$-PM is a pairing of $2n$ objects. The $k$-PM RW selects $k$ pairs uniformly at random, disassociates the corresponding $2k$ objects, then chooses a new pairing on these $2k$ objects uniformly at random. The equilibrium distribution is uniform over the set of all $n$-PM. We establish cutoff for the $k$-PM RW whenever $2 \\le k \\ll n$. If $k \\gg 1$, then the mixing time is $\\tfrac nk \\log n$ to leading order. The case $k = 2$ was established by Diaconis and Holmes (2002) by relating the $2$-PM RW to the random transpositions card shuffle and also by Ceccherini-Silberstein, Scarabotti and Tolli (2007, 2008) using representation theory. We are the first to handle $k>2$. Our argument builds on previous work of Berestycki, Schramm, \\c{S}eng\\\"ul and Zeitouni (2005, 2011, 2019) regarding conjugacy-invariant RWs on the permutation group.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cutoff for rewiring dynamics on perfect matchings\",\"authors\":\"Sam Olesker-Taylor\",\"doi\":\"10.1214/22-aap1825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish cutoff for a natural random walk (RW) on the set of perfect matchings (PMs). An $n$-PM is a pairing of $2n$ objects. The $k$-PM RW selects $k$ pairs uniformly at random, disassociates the corresponding $2k$ objects, then chooses a new pairing on these $2k$ objects uniformly at random. The equilibrium distribution is uniform over the set of all $n$-PM. We establish cutoff for the $k$-PM RW whenever $2 \\\\le k \\\\ll n$. If $k \\\\gg 1$, then the mixing time is $\\\\tfrac nk \\\\log n$ to leading order. The case $k = 2$ was established by Diaconis and Holmes (2002) by relating the $2$-PM RW to the random transpositions card shuffle and also by Ceccherini-Silberstein, Scarabotti and Tolli (2007, 2008) using representation theory. We are the first to handle $k>2$. Our argument builds on previous work of Berestycki, Schramm, \\\\c{S}eng\\\\\\\"ul and Zeitouni (2005, 2011, 2019) regarding conjugacy-invariant RWs on the permutation group.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1825\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1825","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们在完全匹配集(PM)上建立了自然随机游动(RW)的截断。$n$-PM是一对$2n$对象。$k$-PM RW随机一致地选择$k$对,解除相应的$2k$对象的关联,然后随机一致地在这些$2k+对象上选择新的配对。均衡分布在所有$n$-PM的集合上是均匀的。我们为$k$-PM RW设定了截止值,只要$2\le k\ll n$。如果$k\gg 1$,则混合时间为$\tfrac nk\log n$。案例$k=2$是由Diaconis和Holmes(2002)通过将$2$-PM RW与随机换位洗牌联系起来建立的,Ceccherini Silberstein、Scarabotti和Tolli(20072008)也使用表示理论建立的。我们是第一个处理$k>2$的。我们的论点建立在Berestycki,Schramm,\c{S}eng\“ul和Zeitouni(200520112019)关于置换群上的共轭不变RW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutoff for rewiring dynamics on perfect matchings
We establish cutoff for a natural random walk (RW) on the set of perfect matchings (PMs). An $n$-PM is a pairing of $2n$ objects. The $k$-PM RW selects $k$ pairs uniformly at random, disassociates the corresponding $2k$ objects, then chooses a new pairing on these $2k$ objects uniformly at random. The equilibrium distribution is uniform over the set of all $n$-PM. We establish cutoff for the $k$-PM RW whenever $2 \le k \ll n$. If $k \gg 1$, then the mixing time is $\tfrac nk \log n$ to leading order. The case $k = 2$ was established by Diaconis and Holmes (2002) by relating the $2$-PM RW to the random transpositions card shuffle and also by Ceccherini-Silberstein, Scarabotti and Tolli (2007, 2008) using representation theory. We are the first to handle $k>2$. Our argument builds on previous work of Berestycki, Schramm, \c{S}eng\"ul and Zeitouni (2005, 2011, 2019) regarding conjugacy-invariant RWs on the permutation group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信