一种用于导弹情况控制研究的嵌套半参数方法

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Ge Zhao, Yanyuan Ma, Jill S Hasler, S. Damrauer, Michael G. Levin, Jinbo Chen
{"title":"一种用于导弹情况控制研究的嵌套半参数方法","authors":"Ge Zhao, Yanyuan Ma, Jill S Hasler, S. Damrauer, Michael G. Levin, Jinbo Chen","doi":"10.1111/sjos.12673","DOIUrl":null,"url":null,"abstract":"We propose a nested semiparametric model to analyze a case-control study where genuine case status is missing for some individuals. The concept of a noncase is introduced to allow for the imputation of the missing genuine cases. The odds ratio parameter of the genuine cases compared to controls is of interest. The imputation procedure predicts the probability of being a genuine case compared to a noncase semiparametrically in a dimen-sion reduction fashion. This procedure is flexible, and vastly generalizes the existing methods. We establish the root-n asymptotic normality of the odds ratio parameter estimator. Our method yields stable odds ratio parameter estimation owing to the application of an efficient semiparametric sufficient dimension reduction estimator. We conduct finite sample numerical simulations to illustrate the performance of our approach, and apply it to a dilated cardiomyopathy study.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nested Semiparametric Method for Case‐Control Study with Missingness\",\"authors\":\"Ge Zhao, Yanyuan Ma, Jill S Hasler, S. Damrauer, Michael G. Levin, Jinbo Chen\",\"doi\":\"10.1111/sjos.12673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a nested semiparametric model to analyze a case-control study where genuine case status is missing for some individuals. The concept of a noncase is introduced to allow for the imputation of the missing genuine cases. The odds ratio parameter of the genuine cases compared to controls is of interest. The imputation procedure predicts the probability of being a genuine case compared to a noncase semiparametrically in a dimen-sion reduction fashion. This procedure is flexible, and vastly generalizes the existing methods. We establish the root-n asymptotic normality of the odds ratio parameter estimator. Our method yields stable odds ratio parameter estimation owing to the application of an efficient semiparametric sufficient dimension reduction estimator. We conduct finite sample numerical simulations to illustrate the performance of our approach, and apply it to a dilated cardiomyopathy study.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12673\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12673","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nested Semiparametric Method for Case‐Control Study with Missingness
We propose a nested semiparametric model to analyze a case-control study where genuine case status is missing for some individuals. The concept of a noncase is introduced to allow for the imputation of the missing genuine cases. The odds ratio parameter of the genuine cases compared to controls is of interest. The imputation procedure predicts the probability of being a genuine case compared to a noncase semiparametrically in a dimen-sion reduction fashion. This procedure is flexible, and vastly generalizes the existing methods. We establish the root-n asymptotic normality of the odds ratio parameter estimator. Our method yields stable odds ratio parameter estimation owing to the application of an efficient semiparametric sufficient dimension reduction estimator. We conduct finite sample numerical simulations to illustrate the performance of our approach, and apply it to a dilated cardiomyopathy study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信