{"title":"麦克斯韦-玻尔兹曼速度分布的数值迭代力学证明","authors":"Hejie Lin, Tsung-Wu Lin","doi":"10.5539/ijsp.v10n4p21","DOIUrl":null,"url":null,"abstract":"The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. \n \nThis paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b) of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b) is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle. \n \nThe function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a. \n \n \n \nP_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1 \n \n +n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2 \n \nP_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1 \n \n +n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2 \n \nThe final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Numerical Iterations\",\"authors\":\"Hejie Lin, Tsung-Wu Lin\",\"doi\":\"10.5539/ijsp.v10n4p21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. \\n \\nThis paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b) of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b) is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle. \\n \\nThe function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a. \\n \\n \\n \\nP_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1 \\n \\n +n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2 \\n \\nP_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1 \\n \\n +n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2 \\n \\nThe final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.\",\"PeriodicalId\":89781,\"journal\":{\"name\":\"International journal of statistics and probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of statistics and probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ijsp.v10n4p21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijsp.v10n4p21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Numerical Iterations
The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass.
This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b) of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b) is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle.
The function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a.
P_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1
+n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2
P_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1
+n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2
The final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.