麦克斯韦-玻尔兹曼速度分布的数值迭代力学证明

Hejie Lin, Tsung-Wu Lin
{"title":"麦克斯韦-玻尔兹曼速度分布的数值迭代力学证明","authors":"Hejie Lin, Tsung-Wu Lin","doi":"10.5539/ijsp.v10n4p21","DOIUrl":null,"url":null,"abstract":"The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. \n \nThis paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b)  of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b)  is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle. \n \nThe function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a. \n \n  \n \nP_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1 \n \n                          +n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2 \n \nP_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1 \n \n                          +n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2 \n \nThe final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Numerical Iterations\",\"authors\":\"Hejie Lin, Tsung-Wu Lin\",\"doi\":\"10.5539/ijsp.v10n4p21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. \\n \\nThis paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b)  of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b)  is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle. \\n \\nThe function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a. \\n \\n  \\n \\nP_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1 \\n \\n                          +n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2 \\n \\nP_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1 \\n \\n                          +n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2 \\n \\nThe final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.\",\"PeriodicalId\":89781,\"journal\":{\"name\":\"International journal of statistics and probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of statistics and probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ijsp.v10n4p21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijsp.v10n4p21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

麦克斯韦-玻尔兹曼速度分布是描述理想气体粒子速度的概率分布。麦克斯韦-玻尔兹曼速度分布对未混合粒子(一种粒子)和混合粒子(两种粒子)都有效。对于混合粒子,两种类型的粒子都遵循麦克斯韦-玻尔兹曼速度分布。同样,最可能的速度与质量的平方根成反比。本文在牛顿运动定律的基础上,利用计算机生成的数据证明了麦克斯韦-玻尔兹曼速度分布和混合粒子的速比。为此,本文导出了两个质量为M_a的粒子在速度为v_a和质量为M_b的粒子以速度为v_b碰撞后,质量为M_a的粒子的速度u_a的概率密度函数ψ^ab(u_a;v_a,v_b)。函数ψ^ab(u_a;v_a,v_b)是通过一个唯一的过程得到的,该过程考虑了(1)碰撞前相对方向的随机性。(2)碰撞后方向的随机性受到另一个独立角度的影响。函数ψ^ab(u_a;v_a,v_b)在下式中用于数值迭代,从旧分布P_old^a(v_a)得到新分布P_new^a(u_a),并重复使用P_old^a(v_a)=P_new^a(v_a),其中n_a是质量为M_a的粒子的分数。P_new ^ 1 (u_1) = n_1∫_0 ^∞∫_0 ^∞ψ^ 11 (u_1; v_1, v _1) P_old ^ 1 (v_1) P_old ^ 1 _1) dv_1 dv的_1 (v                           + 甲烷、∫_0 ^∞∫_0 ^∞ψ^ 12 (u_1; v_1, v_2) P_old ^ 1 (v_1) P_old ^ 2 (v_2) dv_1 dv_2 P_new ^ 2 (u_2) = n_1∫_0 ^∞∫_0 ^∞ψ^ 21 (u_2; v_2 v_1) P_old ^ 2 (v_2) P_old ^ 1 (v_1) dv_2 dv_1                           + 甲烷、∫_0 ^∞∫_0 ^∞ψ^ 22 (u_2; v_2 v ' _2) P_old ^ 2 (v_2) P_old ^ 2 (v ' _2) dv_2 dv ' _2最终的分布收敛于麦克斯韦速度分布。此外,最终分布的均方根速度的平方与阿伏伽德罗定律所预测的粒子质量成反比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Numerical Iterations
The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b)  of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b)  is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle. The function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a.   P_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1                           +n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2 P_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1                           +n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2 The final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信