{"title":"白毛菊和白毛菊的杂交带:来自自然学家和遗传学的表型数据显示了一致的曲线和种诊断形态学特征的价值","authors":"U. Fritz, L. Grismer, M. Asztalos","doi":"10.3897/vz.73.e103319","DOIUrl":null,"url":null,"abstract":"Using georeferenced photographic records of 2944 grass snakes from Germany, Austria, and northern Italy as well as previously published mtDNA sequences (n = 1062) and microsatellite data (n = 952) for grass snakes from the same regions, we examined whether or not coloration and pattern reliably allow to differentiate between Natrix natrix and N. helvetica and if so, whether the distribution patterns revealed by phenotypes and genetics are congruent. Furthermore, we used cline analyses across hybrid zones to test whether the phenotypic transition from one species to the other parallels the steep clines unveiled by genetics. Our results suggest that the two species can be reliably differentiated using coloration and pattern. The most powerful diagnostic traits are the presence/absence of side bars on the body flanks, the number of occipital spots, and the shape of the posterior dark occipital spot. The distributions of morphologically identified N. natrix and N. helvetica match their genetically confirmed ranges. Single conflicting individuals morphologically identified as N. natrix or hybrids within the distribution range of N. helvetica either represent misidentifications or translocated snakes. For the genetic markers and phenotypes, our cline analyses revealed concordant steep clines across hybrid zones. However, the southern part of the hybrid zone in Italy, for which no sufficient genetic data are available, should be studied in more detail because the phenotypic data suggest a smooth cline in this region. The unexpected high percentage of putative hybrids with dorsal stripes in this region also calls for further research. For northwestern Germany, another region for which no genetically verified records are available, iNaturalist data suggest that the contact zone of N. natrix and N. helvetica is near the Ems River and extends from there southeastwards to the region of Höxter, North Rhine-Westphalia.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid zones of Natrix helvetica and N. natrix: Phenotype data from iNaturalist and genetics reveal concordant clines and the value of species-diagnostic morphological traits\",\"authors\":\"U. Fritz, L. Grismer, M. Asztalos\",\"doi\":\"10.3897/vz.73.e103319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using georeferenced photographic records of 2944 grass snakes from Germany, Austria, and northern Italy as well as previously published mtDNA sequences (n = 1062) and microsatellite data (n = 952) for grass snakes from the same regions, we examined whether or not coloration and pattern reliably allow to differentiate between Natrix natrix and N. helvetica and if so, whether the distribution patterns revealed by phenotypes and genetics are congruent. Furthermore, we used cline analyses across hybrid zones to test whether the phenotypic transition from one species to the other parallels the steep clines unveiled by genetics. Our results suggest that the two species can be reliably differentiated using coloration and pattern. The most powerful diagnostic traits are the presence/absence of side bars on the body flanks, the number of occipital spots, and the shape of the posterior dark occipital spot. The distributions of morphologically identified N. natrix and N. helvetica match their genetically confirmed ranges. Single conflicting individuals morphologically identified as N. natrix or hybrids within the distribution range of N. helvetica either represent misidentifications or translocated snakes. For the genetic markers and phenotypes, our cline analyses revealed concordant steep clines across hybrid zones. However, the southern part of the hybrid zone in Italy, for which no sufficient genetic data are available, should be studied in more detail because the phenotypic data suggest a smooth cline in this region. The unexpected high percentage of putative hybrids with dorsal stripes in this region also calls for further research. For northwestern Germany, another region for which no genetically verified records are available, iNaturalist data suggest that the contact zone of N. natrix and N. helvetica is near the Ems River and extends from there southeastwards to the region of Höxter, North Rhine-Westphalia.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3897/vz.73.e103319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/vz.73.e103319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hybrid zones of Natrix helvetica and N. natrix: Phenotype data from iNaturalist and genetics reveal concordant clines and the value of species-diagnostic morphological traits
Using georeferenced photographic records of 2944 grass snakes from Germany, Austria, and northern Italy as well as previously published mtDNA sequences (n = 1062) and microsatellite data (n = 952) for grass snakes from the same regions, we examined whether or not coloration and pattern reliably allow to differentiate between Natrix natrix and N. helvetica and if so, whether the distribution patterns revealed by phenotypes and genetics are congruent. Furthermore, we used cline analyses across hybrid zones to test whether the phenotypic transition from one species to the other parallels the steep clines unveiled by genetics. Our results suggest that the two species can be reliably differentiated using coloration and pattern. The most powerful diagnostic traits are the presence/absence of side bars on the body flanks, the number of occipital spots, and the shape of the posterior dark occipital spot. The distributions of morphologically identified N. natrix and N. helvetica match their genetically confirmed ranges. Single conflicting individuals morphologically identified as N. natrix or hybrids within the distribution range of N. helvetica either represent misidentifications or translocated snakes. For the genetic markers and phenotypes, our cline analyses revealed concordant steep clines across hybrid zones. However, the southern part of the hybrid zone in Italy, for which no sufficient genetic data are available, should be studied in more detail because the phenotypic data suggest a smooth cline in this region. The unexpected high percentage of putative hybrids with dorsal stripes in this region also calls for further research. For northwestern Germany, another region for which no genetically verified records are available, iNaturalist data suggest that the contact zone of N. natrix and N. helvetica is near the Ems River and extends from there southeastwards to the region of Höxter, North Rhine-Westphalia.