改进了$${{\varvec{k}}}$$ k -平面树的枚举方法 $${\varvec{k}}$$

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Isaac Owino Okoth, Stephan Wagner
{"title":"改进了$${{\\varvec{k}}}$$ k -平面树的枚举方法 $${\\varvec{k}}$$","authors":"Isaac Owino Okoth,&nbsp;Stephan Wagner","doi":"10.1007/s00026-023-00642-6","DOIUrl":null,"url":null,"abstract":"<div><p>A <i>k</i>-<i>plane tree</i> is a plane tree whose vertices are assigned labels between 1 and <i>k</i> in such a way that the sum of the labels along any edge is no greater than <span>\\(k+1\\)</span>. These trees are known to be related to <span>\\((k+1)\\)</span>-ary trees, and they are counted by a generalised version of the Catalan numbers. We prove a surprisingly simple refined counting formula, where we count trees with a prescribed number of labels of each kind. Several corollaries are derived from this formula, and an analogous theorem is proven for <i>k</i>-<i>noncrossing trees</i>, a similarly defined family of labelled noncrossing trees that are related to <span>\\((2k+1)\\)</span>-ary trees.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"28 1","pages":"121 - 153"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00642-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Refined Enumeration of \\\\({{\\\\varvec{k}}}\\\\)-plane Trees and \\\\({\\\\varvec{k}}\\\\)-noncrossing Trees\",\"authors\":\"Isaac Owino Okoth,&nbsp;Stephan Wagner\",\"doi\":\"10.1007/s00026-023-00642-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A <i>k</i>-<i>plane tree</i> is a plane tree whose vertices are assigned labels between 1 and <i>k</i> in such a way that the sum of the labels along any edge is no greater than <span>\\\\(k+1\\\\)</span>. These trees are known to be related to <span>\\\\((k+1)\\\\)</span>-ary trees, and they are counted by a generalised version of the Catalan numbers. We prove a surprisingly simple refined counting formula, where we count trees with a prescribed number of labels of each kind. Several corollaries are derived from this formula, and an analogous theorem is proven for <i>k</i>-<i>noncrossing trees</i>, a similarly defined family of labelled noncrossing trees that are related to <span>\\\\((2k+1)\\\\)</span>-ary trees.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"28 1\",\"pages\":\"121 - 153\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-023-00642-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00642-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00642-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

k 平面树是一种平面树,它的顶点被分配的标签介于 1 和 k 之间,使得任何一条边上的标签之和都不大于 \(k+1\)。众所周知,这些树与((k+1)\)ary 树有关,而且它们是用广义版的加泰罗尼亚数来计数的。我们证明了一个简单得令人吃惊的精炼计数公式,在这个公式中,我们对每一种树都有规定数量的标签进行计数。我们从这个公式中推导出了几个推论,并证明了 k-noncrossing 树的类似定理,这是一个与 \((2k+1)\ary 树相关的有标签的非交叉树的类似定义族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Refined Enumeration of \({{\varvec{k}}}\)-plane Trees and \({\varvec{k}}\)-noncrossing Trees

Refined Enumeration of \({{\varvec{k}}}\)-plane Trees and \({\varvec{k}}\)-noncrossing Trees

A k-plane tree is a plane tree whose vertices are assigned labels between 1 and k in such a way that the sum of the labels along any edge is no greater than \(k+1\). These trees are known to be related to \((k+1)\)-ary trees, and they are counted by a generalised version of the Catalan numbers. We prove a surprisingly simple refined counting formula, where we count trees with a prescribed number of labels of each kind. Several corollaries are derived from this formula, and an analogous theorem is proven for k-noncrossing trees, a similarly defined family of labelled noncrossing trees that are related to \((2k+1)\)-ary trees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信