指数非线性热方程的整体存在性和衰减估计

Pub Date : 2019-12-12 DOI:10.1619/fesi.64.237
M. Majdoub, S. Tayachi
{"title":"指数非线性热方程的整体存在性和衰减估计","authors":"M. Majdoub, S. Tayachi","doi":"10.1619/fesi.64.237","DOIUrl":null,"url":null,"abstract":"In this paper we consider the initial value {problem $\\partial_{t} u- \\Delta u=f(u),$ $u(0)=u_0\\in exp\\,L^p(\\mathbb{R}^N),$} where $p>1$ and $f : \\mathbb{R}\\to\\mathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on the initial data and for nonlinearity $f$ {such that $|f(u)|\\sim \\mbox{e}^{|u|^q}$ as $|u|\\to \\infty$,} $|f(u)|\\sim |u|^{m}$ as $u\\to 0,$ $0 1$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global Existence and Decay Estimates for the Heat Equation with Exponential Nonlinearity\",\"authors\":\"M. Majdoub, S. Tayachi\",\"doi\":\"10.1619/fesi.64.237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the initial value {problem $\\\\partial_{t} u- \\\\Delta u=f(u),$ $u(0)=u_0\\\\in exp\\\\,L^p(\\\\mathbb{R}^N),$} where $p>1$ and $f : \\\\mathbb{R}\\\\to\\\\mathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on the initial data and for nonlinearity $f$ {such that $|f(u)|\\\\sim \\\\mbox{e}^{|u|^q}$ as $|u|\\\\to \\\\infty$,} $|f(u)|\\\\sim |u|^{m}$ as $u\\\\to 0,$ $0 1$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.64.237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.64.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑的是初始值 {问题 $\partial_{t} u- \Delta u=f(u),$ $u(0)=u_0\in exp\,L^p(\mathbb{R}^N),$} 在哪里 $p>1$ 和 $f : \mathbb{R}\to\mathbb{R}$ 在无穷远处呈指数增长 $f(0)=0.$ 在初始数据较小和非线性的条件下 $f$ {这样 $|f(u)|\sim \mbox{e}^{|u|^q}$ as $|u|\to \infty$,} $|f(u)|\sim |u|^{m}$ as $u\to 0,$ $0 1$,我们表明解决方案是全球性的。此外,我们还得到了大时间勒贝格空间中的衰减估计 $m.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global Existence and Decay Estimates for the Heat Equation with Exponential Nonlinearity
In this paper we consider the initial value {problem $\partial_{t} u- \Delta u=f(u),$ $u(0)=u_0\in exp\,L^p(\mathbb{R}^N),$} where $p>1$ and $f : \mathbb{R}\to\mathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on the initial data and for nonlinearity $f$ {such that $|f(u)|\sim \mbox{e}^{|u|^q}$ as $|u|\to \infty$,} $|f(u)|\sim |u|^{m}$ as $u\to 0,$ $0 1$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信