{"title":"关于Sheffer Stroke - be代数","authors":"T. Katican, T. Oner, A. Saeid","doi":"10.7151/dmgaa.1391","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we introduce Sheffer stroke BE-algebras (briefly, SBE-algebras) and investigate a relationship between SBE-algebras and BE-algebras. By presenting a SBE-filter, an upper set and a SBE-subalgebra on a SBE-algebra, it is shown that any SBE-filter of a SBE-algebra is a SBE-subalgebra but the converse of this statement is not true. Besides we construct quotient SBE-algebras via a congruence relation defined by a special SBE-filter. We discuss SBE-homomorphisms and their properties between SBE-algebras. Finally, a relation between Sheffer stroke Hilbert algebras and SBE-algebras is established.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"42 1","pages":"293 - 314"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Sheffer Stroke Be-Algebras\",\"authors\":\"T. Katican, T. Oner, A. Saeid\",\"doi\":\"10.7151/dmgaa.1391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we introduce Sheffer stroke BE-algebras (briefly, SBE-algebras) and investigate a relationship between SBE-algebras and BE-algebras. By presenting a SBE-filter, an upper set and a SBE-subalgebra on a SBE-algebra, it is shown that any SBE-filter of a SBE-algebra is a SBE-subalgebra but the converse of this statement is not true. Besides we construct quotient SBE-algebras via a congruence relation defined by a special SBE-filter. We discuss SBE-homomorphisms and their properties between SBE-algebras. Finally, a relation between Sheffer stroke Hilbert algebras and SBE-algebras is established.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"42 1\",\"pages\":\"293 - 314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Abstract In this paper we introduce Sheffer stroke BE-algebras (briefly, SBE-algebras) and investigate a relationship between SBE-algebras and BE-algebras. By presenting a SBE-filter, an upper set and a SBE-subalgebra on a SBE-algebra, it is shown that any SBE-filter of a SBE-algebra is a SBE-subalgebra but the converse of this statement is not true. Besides we construct quotient SBE-algebras via a congruence relation defined by a special SBE-filter. We discuss SBE-homomorphisms and their properties between SBE-algebras. Finally, a relation between Sheffer stroke Hilbert algebras and SBE-algebras is established.