Tong Guo, Qianwen Weng, Bei Luo, Jinping Chen, Xing Fu, Xiaotang Hu
{"title":"白光光谱干涉仪等效厚度的非线性相位误差分析","authors":"Tong Guo, Qianwen Weng, Bei Luo, Jinping Chen, Xing Fu, Xiaotang Hu","doi":"10.1016/j.npe.2019.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>A white light spectral interferometry based on a Linnik type system was established to accurately measure the thin film thickness through transparent medium. In practical work, the equivalent thickness of a beam splitter and the mismatch of the objective lens introduce nonlinear phase errors. Adding a transparent medium also increases the equivalent thickness. The simulation results show that the equivalent thickness has a significant effect on thin film thickness measurements. Therefore, it is necessary to perform wavelength correction to provide a constant equivalent thickness for beam splitters. In the experiments, some pieces of cover glasses as the transparent medium were added to the measured beam and then a standard thin film thickness of 1052.2±0.9 nm was tested through the transparent medium. The results demonstrate that our system has a nanometer-level accuracy for thin film thickness measurement through transparent medium with optical path compensation.</p></div>","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":"2 2","pages":"Pages 77-82"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.npe.2019.07.003","citationCount":"1","resultStr":"{\"title\":\"Nonlinear phase error analysis of equivalent thickness in a white-light spectral interferometer\",\"authors\":\"Tong Guo, Qianwen Weng, Bei Luo, Jinping Chen, Xing Fu, Xiaotang Hu\",\"doi\":\"10.1016/j.npe.2019.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A white light spectral interferometry based on a Linnik type system was established to accurately measure the thin film thickness through transparent medium. In practical work, the equivalent thickness of a beam splitter and the mismatch of the objective lens introduce nonlinear phase errors. Adding a transparent medium also increases the equivalent thickness. The simulation results show that the equivalent thickness has a significant effect on thin film thickness measurements. Therefore, it is necessary to perform wavelength correction to provide a constant equivalent thickness for beam splitters. In the experiments, some pieces of cover glasses as the transparent medium were added to the measured beam and then a standard thin film thickness of 1052.2±0.9 nm was tested through the transparent medium. The results demonstrate that our system has a nanometer-level accuracy for thin film thickness measurement through transparent medium with optical path compensation.</p></div>\",\"PeriodicalId\":87330,\"journal\":{\"name\":\"Nanotechnology and Precision Engineering\",\"volume\":\"2 2\",\"pages\":\"Pages 77-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.npe.2019.07.003\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589554019300224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589554019300224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear phase error analysis of equivalent thickness in a white-light spectral interferometer
A white light spectral interferometry based on a Linnik type system was established to accurately measure the thin film thickness through transparent medium. In practical work, the equivalent thickness of a beam splitter and the mismatch of the objective lens introduce nonlinear phase errors. Adding a transparent medium also increases the equivalent thickness. The simulation results show that the equivalent thickness has a significant effect on thin film thickness measurements. Therefore, it is necessary to perform wavelength correction to provide a constant equivalent thickness for beam splitters. In the experiments, some pieces of cover glasses as the transparent medium were added to the measured beam and then a standard thin film thickness of 1052.2±0.9 nm was tested through the transparent medium. The results demonstrate that our system has a nanometer-level accuracy for thin film thickness measurement through transparent medium with optical path compensation.