伯兹-皮特曼猜想的一个组合证明

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Stanisław Cichomski, F. Petrov
{"title":"伯兹-皮特曼猜想的一个组合证明","authors":"Stanisław Cichomski, F. Petrov","doi":"10.1214/23-ecp512","DOIUrl":null,"url":null,"abstract":"We prove a sharp upper bound for the number of high degree differences in bipartite graphs: let ( U, V, E ) be a bipartite graph with U = { u 1 , u 2 , . . . , u n } and V = { v 1 , v 2 , . . . , v n } ; for n ≥ k > n 2 we show that As a direct application we show a slightly stronger, probabilistic version of this theorem and thus confirm the Burdzy–Pitman conjecture about the maximal spread of coherent and independent distributions.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A combinatorial proof of the Burdzy–Pitman conjecture\",\"authors\":\"Stanisław Cichomski, F. Petrov\",\"doi\":\"10.1214/23-ecp512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a sharp upper bound for the number of high degree differences in bipartite graphs: let ( U, V, E ) be a bipartite graph with U = { u 1 , u 2 , . . . , u n } and V = { v 1 , v 2 , . . . , v n } ; for n ≥ k > n 2 we show that As a direct application we show a slightly stronger, probabilistic version of this theorem and thus confirm the Burdzy–Pitman conjecture about the maximal spread of coherent and independent distributions.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp512\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp512","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

摘要

我们证明了二部图中高阶差数的一个尖锐上界:设(U, V, E)是一个U = {U 1, U 2,…的二部图。, u n}和V = {v1, v2,…, v n};作为一个直接应用,我们给出了这个定理的一个稍微强一点的概率版本,从而证实了关于相干和独立分布的最大扩展的Burdzy-Pitman猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combinatorial proof of the Burdzy–Pitman conjecture
We prove a sharp upper bound for the number of high degree differences in bipartite graphs: let ( U, V, E ) be a bipartite graph with U = { u 1 , u 2 , . . . , u n } and V = { v 1 , v 2 , . . . , v n } ; for n ≥ k > n 2 we show that As a direct application we show a slightly stronger, probabilistic version of this theorem and thus confirm the Burdzy–Pitman conjecture about the maximal spread of coherent and independent distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信