利用分子结构和生物活性的化学语言模型进行药物设计

Michael Moret, F. Grisoni, Cyrill Brunner, G. Schneider
{"title":"利用分子结构和生物活性的化学语言模型进行药物设计","authors":"Michael Moret, F. Grisoni, Cyrill Brunner, G. Schneider","doi":"10.33774/chemrxiv-2021-xzgst","DOIUrl":null,"url":null,"abstract":"Generative chemical language models (CLMs) can be used for de novo molecular structure generation. These CLMs learn from the structural information of known molecules to generate new ones. In this paper, we show that “hybrid” CLMs can additionally leverage the bioactivity information available for the training compounds. To computationally design ligands of phosphoinositide 3-kinase gamma (PI3Kγ), we created a large collection of virtual molecules with a generative CLM. This primary virtual compound library was further refined using a CLM-based classifier for bioactivity prediction. This second hybrid CLM was pretrained with patented molecular structures and fine-tuned with known PI3Kγ binders and non-binders by transfer learning. Several of the computer-generated molecular designs were commercially available, which allowed for fast prescreening and preliminary experimental validation. A new PI3Kγ ligand with sub-micromolar activity was identified. The results positively advocate hybrid CLMs for virtual compound screening and activity-focused molecular design in low-data situations.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leveraging molecular structure and bioactivity with chemical language models for drug design\",\"authors\":\"Michael Moret, F. Grisoni, Cyrill Brunner, G. Schneider\",\"doi\":\"10.33774/chemrxiv-2021-xzgst\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative chemical language models (CLMs) can be used for de novo molecular structure generation. These CLMs learn from the structural information of known molecules to generate new ones. In this paper, we show that “hybrid” CLMs can additionally leverage the bioactivity information available for the training compounds. To computationally design ligands of phosphoinositide 3-kinase gamma (PI3Kγ), we created a large collection of virtual molecules with a generative CLM. This primary virtual compound library was further refined using a CLM-based classifier for bioactivity prediction. This second hybrid CLM was pretrained with patented molecular structures and fine-tuned with known PI3Kγ binders and non-binders by transfer learning. Several of the computer-generated molecular designs were commercially available, which allowed for fast prescreening and preliminary experimental validation. A new PI3Kγ ligand with sub-micromolar activity was identified. The results positively advocate hybrid CLMs for virtual compound screening and activity-focused molecular design in low-data situations.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-xzgst\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-xzgst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生成化学语言模型(CLM)可以用于从头生成分子结构。这些CLM从已知分子的结构信息中学习以产生新的分子。在本文中,我们表明“杂交”CLM可以额外利用训练化合物的生物活性信息。为了计算设计磷酸肌醇3-激酶γ(PI3Kγ)的配体,我们创建了一个具有生成CLM的大量虚拟分子集合。使用用于生物活性预测的基于CLM的分类器来进一步细化该初级虚拟化合物库。第二种杂交CLM是用获得专利的分子结构预训练的,并通过迁移学习用已知的PI3Kγ结合物和非结合物进行微调。一些计算机生成的分子设计可以在市场上买到,这使得快速预筛选和初步实验验证成为可能。鉴定了一种新的具有亚微摩尔活性的PI3Kγ配体。该结果积极支持在低数据情况下进行虚拟化合物筛选和以活性为重点的分子设计的杂交CLM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging molecular structure and bioactivity with chemical language models for drug design
Generative chemical language models (CLMs) can be used for de novo molecular structure generation. These CLMs learn from the structural information of known molecules to generate new ones. In this paper, we show that “hybrid” CLMs can additionally leverage the bioactivity information available for the training compounds. To computationally design ligands of phosphoinositide 3-kinase gamma (PI3Kγ), we created a large collection of virtual molecules with a generative CLM. This primary virtual compound library was further refined using a CLM-based classifier for bioactivity prediction. This second hybrid CLM was pretrained with patented molecular structures and fine-tuned with known PI3Kγ binders and non-binders by transfer learning. Several of the computer-generated molecular designs were commercially available, which allowed for fast prescreening and preliminary experimental validation. A new PI3Kγ ligand with sub-micromolar activity was identified. The results positively advocate hybrid CLMs for virtual compound screening and activity-focused molecular design in low-data situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信