F. Giroire, N. Nisse, Thibaud Trolliet, M. Sułkowska
{"title":"具有高模块化的优先依恋超图","authors":"F. Giroire, N. Nisse, Thibaud Trolliet, M. Sułkowska","doi":"10.1017/nws.2022.35","DOIUrl":null,"url":null,"abstract":"Abstract Numerous works have been proposed to generate random graphs preserving the same properties as real-life large-scale networks. However, many real networks are better represented by hypergraphs. Few models for generating random hypergraphs exist, and also, just a few models allow to both preserve a power-law degree distribution and a high modularity indicating the presence of communities. We present a dynamic preferential attachment hypergraph model which features partition into communities. We prove that its degree distribution follows a power-law, and we give theoretical lower bounds for its modularity. We compare its characteristics with a real-life co-authorship network and show that our model achieves good performances. We believe that our hypergraph model will be an interesting tool that may be used in many research domains in order to reflect better real-life phenomena.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Preferential attachment hypergraph with high modularity\",\"authors\":\"F. Giroire, N. Nisse, Thibaud Trolliet, M. Sułkowska\",\"doi\":\"10.1017/nws.2022.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Numerous works have been proposed to generate random graphs preserving the same properties as real-life large-scale networks. However, many real networks are better represented by hypergraphs. Few models for generating random hypergraphs exist, and also, just a few models allow to both preserve a power-law degree distribution and a high modularity indicating the presence of communities. We present a dynamic preferential attachment hypergraph model which features partition into communities. We prove that its degree distribution follows a power-law, and we give theoretical lower bounds for its modularity. We compare its characteristics with a real-life co-authorship network and show that our model achieves good performances. We believe that our hypergraph model will be an interesting tool that may be used in many research domains in order to reflect better real-life phenomena.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2022.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2022.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Preferential attachment hypergraph with high modularity
Abstract Numerous works have been proposed to generate random graphs preserving the same properties as real-life large-scale networks. However, many real networks are better represented by hypergraphs. Few models for generating random hypergraphs exist, and also, just a few models allow to both preserve a power-law degree distribution and a high modularity indicating the presence of communities. We present a dynamic preferential attachment hypergraph model which features partition into communities. We prove that its degree distribution follows a power-law, and we give theoretical lower bounds for its modularity. We compare its characteristics with a real-life co-authorship network and show that our model achieves good performances. We believe that our hypergraph model will be an interesting tool that may be used in many research domains in order to reflect better real-life phenomena.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.