在某些有理数完全数上

IF 0.4 Q4 MATHEMATICS
J. Sándor
{"title":"在某些有理数完全数上","authors":"J. Sándor","doi":"10.7546/nntdm.2022.28.3.525-532","DOIUrl":null,"url":null,"abstract":"We continue the study from [1], by studying equations of type $\\psi(n) = \\dfrac{k+1}{k}  \\cdot \\ n+a,$ $a\\in \\{0, 1, 2, 3\\},$ and $\\varphi(n) = \\dfrac{k-1}{k}   \\cdot \\ n-a,$ $a\\in \\{0, 1, 2, 3\\}$ for $k > 1,$ where $\\psi(n)$ and $\\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain rational perfect numbers, II\",\"authors\":\"J. Sándor\",\"doi\":\"10.7546/nntdm.2022.28.3.525-532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the study from [1], by studying equations of type $\\\\psi(n) = \\\\dfrac{k+1}{k}  \\\\cdot \\\\ n+a,$ $a\\\\in \\\\{0, 1, 2, 3\\\\},$ and $\\\\varphi(n) = \\\\dfrac{k-1}{k}   \\\\cdot \\\\ n-a,$ $a\\\\in \\\\{0, 1, 2, 3\\\\}$ for $k > 1,$ where $\\\\psi(n)$ and $\\\\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2022.28.3.525-532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.3.525-532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们继续从[1]开始的研究,通过研究$\psi(n)=\dfrac{k+1}{k}\cdot\n+a,$$a\in\{0,1,2,3\},$和$\varphi(n)=\dfrac{k-1}{k}/cdot\n-a,$$$a\\in\{0、1、2、3\}$类型的方程,对于$k>1,其中$\psi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On certain rational perfect numbers, II
We continue the study from [1], by studying equations of type $\psi(n) = \dfrac{k+1}{k}  \cdot \ n+a,$ $a\in \{0, 1, 2, 3\},$ and $\varphi(n) = \dfrac{k-1}{k}   \cdot \ n-a,$ $a\in \{0, 1, 2, 3\}$ for $k > 1,$ where $\psi(n)$ and $\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信