{"title":"n-半量子化模的一些性质","authors":"Tony Se","doi":"10.1007/s40306-022-00492-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a commutative noetherian ring. The <i>n</i>-semidualizing modules of <i>R</i> are generalizations of its semidualizing modules. We will prove some basic properties of <i>n</i>-semidualizing modules. Our main result and example shows that the divisor class group of a Gorenstein determinantal ring over a field is the set of isomorphism classes of its 1-semidualizing modules. Finally, we pose some questions about <i>n</i>-semidualizing modules.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"48 2","pages":"343 - 358"},"PeriodicalIF":0.3000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some Properties of n-semidualizing Modules\",\"authors\":\"Tony Se\",\"doi\":\"10.1007/s40306-022-00492-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>R</i> be a commutative noetherian ring. The <i>n</i>-semidualizing modules of <i>R</i> are generalizations of its semidualizing modules. We will prove some basic properties of <i>n</i>-semidualizing modules. Our main result and example shows that the divisor class group of a Gorenstein determinantal ring over a field is the set of isomorphism classes of its 1-semidualizing modules. Finally, we pose some questions about <i>n</i>-semidualizing modules.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"48 2\",\"pages\":\"343 - 358\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-022-00492-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-022-00492-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let R be a commutative noetherian ring. The n-semidualizing modules of R are generalizations of its semidualizing modules. We will prove some basic properties of n-semidualizing modules. Our main result and example shows that the divisor class group of a Gorenstein determinantal ring over a field is the set of isomorphism classes of its 1-semidualizing modules. Finally, we pose some questions about n-semidualizing modules.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.