{"title":"完全对称自互补平面分区中的相关关系","authors":"Arvind Ayyer, S. Chhita","doi":"10.1112/tlm3.12039","DOIUrl":null,"url":null,"abstract":"Totally symmetric self‐complementary plane partitions (TSSCPPs) are boxed plane partitions with the maximum possible symmetry. We use the well‐known representation of TSSCPPs as a dimer model on a honeycomb graph enclosed in 1/12 of a hexagon with free boundary to express them as perfect matchings of a family of non‐bipartite planar graphs. Our main result is that the edges of the TSSCPPs form a Pfaffian point process, for which we give explicit formulas for the inverse Kasteleyn matrix. Preliminary analysis of these correlations are then used to give a precise conjecture for the limit shape of TSSCPPs in the scaling limit.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Correlations in totally symmetric self‐complementary plane partitions\",\"authors\":\"Arvind Ayyer, S. Chhita\",\"doi\":\"10.1112/tlm3.12039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Totally symmetric self‐complementary plane partitions (TSSCPPs) are boxed plane partitions with the maximum possible symmetry. We use the well‐known representation of TSSCPPs as a dimer model on a honeycomb graph enclosed in 1/12 of a hexagon with free boundary to express them as perfect matchings of a family of non‐bipartite planar graphs. Our main result is that the edges of the TSSCPPs form a Pfaffian point process, for which we give explicit formulas for the inverse Kasteleyn matrix. Preliminary analysis of these correlations are then used to give a precise conjecture for the limit shape of TSSCPPs in the scaling limit.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Correlations in totally symmetric self‐complementary plane partitions
Totally symmetric self‐complementary plane partitions (TSSCPPs) are boxed plane partitions with the maximum possible symmetry. We use the well‐known representation of TSSCPPs as a dimer model on a honeycomb graph enclosed in 1/12 of a hexagon with free boundary to express them as perfect matchings of a family of non‐bipartite planar graphs. Our main result is that the edges of the TSSCPPs form a Pfaffian point process, for which we give explicit formulas for the inverse Kasteleyn matrix. Preliminary analysis of these correlations are then used to give a precise conjecture for the limit shape of TSSCPPs in the scaling limit.