量子群的显式Rieffel诱导模

IF 0.7 2区 数学 Q2 MATHEMATICS
Damien Rivet
{"title":"量子群的显式Rieffel诱导模","authors":"Damien Rivet","doi":"10.4171/jncg/477","DOIUrl":null,"url":null,"abstract":"For $\\mathbb{G}$ an algebraic (or more generally, a bornological) quantum group and $\\mathbb{B}$ a closed quantum subgroup of $\\mathbb{G}$, we build in this paper an induction module by explicitly defining an inner product which takes its value in the convolution algebra of $\\mathbb{B}$, as in the original approach of Rieffel \\cite{Rieffel}. In this context, we study the link with the induction functor defined by Vaes. In the last part we illustrate our result with parabolic induction of complex semi-simple quantum groups with the approach suggested by Clare \\cite{Clare}\\cite{CCH}.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explicit Rieffel induction module for quantum groups\",\"authors\":\"Damien Rivet\",\"doi\":\"10.4171/jncg/477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $\\\\mathbb{G}$ an algebraic (or more generally, a bornological) quantum group and $\\\\mathbb{B}$ a closed quantum subgroup of $\\\\mathbb{G}$, we build in this paper an induction module by explicitly defining an inner product which takes its value in the convolution algebra of $\\\\mathbb{B}$, as in the original approach of Rieffel \\\\cite{Rieffel}. In this context, we study the link with the induction functor defined by Vaes. In the last part we illustrate our result with parabolic induction of complex semi-simple quantum groups with the approach suggested by Clare \\\\cite{Clare}\\\\cite{CCH}.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/477\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/477","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于$\mathbb{G}$一个代数(或更一般地说,一个bornological)量子群和$\mathbb{B}$一个$\mathbb{G}$的封闭量子子群,我们通过显式地定义一个取其在$\mathbb{B}$的卷积代数中的值的内积,建立了一个归纳模块,正如Rieffel \cite{Rieffel}的原始方法一样。在这种情况下,我们研究了与ves定义的感应函子的链接。在最后一部分中,我们用克莱尔\cite{Clare}\cite{CCH}提出的方法用复杂半简单量子群的抛物归纳说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Rieffel induction module for quantum groups
For $\mathbb{G}$ an algebraic (or more generally, a bornological) quantum group and $\mathbb{B}$ a closed quantum subgroup of $\mathbb{G}$, we build in this paper an induction module by explicitly defining an inner product which takes its value in the convolution algebra of $\mathbb{B}$, as in the original approach of Rieffel \cite{Rieffel}. In this context, we study the link with the induction functor defined by Vaes. In the last part we illustrate our result with parabolic induction of complex semi-simple quantum groups with the approach suggested by Clare \cite{Clare}\cite{CCH}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信