{"title":"基于异常信号特征的心电图异常分类","authors":"S. I. Purnama, M. Afandi","doi":"10.25077/jnte.v10n3.829.2021","DOIUrl":null,"url":null,"abstract":"Heart rate abnormalities can lead to many cardiovascular diseases such as heart arrythmia, heart failure, heart valve disease and many more. Some cardiovascular disease can cause death. Abnormalities signal feature can be seen using electrocardiogram. Electrocardiogram is an electric signal record from heart activity. Normal heart and abnormal heart have a different electrocardiogram signal pattern. This research is aim to detect abnormality from heart rate using electrocardiogram abnormality signal feature. Abnormality signal pattern can be used to classify normal and abnormal heart rate. Abnormality feature consists of P signal condition, R signal condition, P R interval rate, and double R interval. Electrocardiogram data that used in this study is obtain from MIT-BIH Arrythmia database. 20 electrocardiogram data have been used to see detection and classification performance while classifying normal and abnormal heart rate. Research result shows that feature based has 90.00% in accuracy, 90.00%in precision, and 90.00% in sensitivity while classify normal and abnormal heart rate. Research result can conclude that abnormality feature can be used to classify normal and abnormal heart rate. This method can be used for embedded system device that has limitation in memory and size.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrocardiogram Abnormal Classification Based on Abnormality Signal Feature\",\"authors\":\"S. I. Purnama, M. Afandi\",\"doi\":\"10.25077/jnte.v10n3.829.2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart rate abnormalities can lead to many cardiovascular diseases such as heart arrythmia, heart failure, heart valve disease and many more. Some cardiovascular disease can cause death. Abnormalities signal feature can be seen using electrocardiogram. Electrocardiogram is an electric signal record from heart activity. Normal heart and abnormal heart have a different electrocardiogram signal pattern. This research is aim to detect abnormality from heart rate using electrocardiogram abnormality signal feature. Abnormality signal pattern can be used to classify normal and abnormal heart rate. Abnormality feature consists of P signal condition, R signal condition, P R interval rate, and double R interval. Electrocardiogram data that used in this study is obtain from MIT-BIH Arrythmia database. 20 electrocardiogram data have been used to see detection and classification performance while classifying normal and abnormal heart rate. Research result shows that feature based has 90.00% in accuracy, 90.00%in precision, and 90.00% in sensitivity while classify normal and abnormal heart rate. Research result can conclude that abnormality feature can be used to classify normal and abnormal heart rate. This method can be used for embedded system device that has limitation in memory and size.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v10n3.829.2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v10n3.829.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrocardiogram Abnormal Classification Based on Abnormality Signal Feature
Heart rate abnormalities can lead to many cardiovascular diseases such as heart arrythmia, heart failure, heart valve disease and many more. Some cardiovascular disease can cause death. Abnormalities signal feature can be seen using electrocardiogram. Electrocardiogram is an electric signal record from heart activity. Normal heart and abnormal heart have a different electrocardiogram signal pattern. This research is aim to detect abnormality from heart rate using electrocardiogram abnormality signal feature. Abnormality signal pattern can be used to classify normal and abnormal heart rate. Abnormality feature consists of P signal condition, R signal condition, P R interval rate, and double R interval. Electrocardiogram data that used in this study is obtain from MIT-BIH Arrythmia database. 20 electrocardiogram data have been used to see detection and classification performance while classifying normal and abnormal heart rate. Research result shows that feature based has 90.00% in accuracy, 90.00%in precision, and 90.00% in sensitivity while classify normal and abnormal heart rate. Research result can conclude that abnormality feature can be used to classify normal and abnormal heart rate. This method can be used for embedded system device that has limitation in memory and size.