积分微分Volterra方程在时间尺度上的指数稳定性

Q4 Mathematics
U. Ostaszewska, E. Schmeidel, M. Zdanowicz
{"title":"积分微分Volterra方程在时间尺度上的指数稳定性","authors":"U. Ostaszewska, E. Schmeidel, M. Zdanowicz","doi":"10.2478/tmmp-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract We study the Volterra integro-differential equation on time scales and provide sufficient conditions for boundness of all solutions of considered equation. Using that result, we present the conditions for exponential stability of considered equation. All the results proved on the general time scale include results for both integral and discrete Volterra equations.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"84 1","pages":"77 - 86"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Stability of Integro-Differential Volterra Equation on Time Scales\",\"authors\":\"U. Ostaszewska, E. Schmeidel, M. Zdanowicz\",\"doi\":\"10.2478/tmmp-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the Volterra integro-differential equation on time scales and provide sufficient conditions for boundness of all solutions of considered equation. Using that result, we present the conditions for exponential stability of considered equation. All the results proved on the general time scale include results for both integral and discrete Volterra equations.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"84 1\",\"pages\":\"77 - 86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们研究了时间尺度上的Volterra积分微分方程,并给出了所考虑方程所有解有界的充分条件。利用这个结果,我们给出了所考虑的方程的指数稳定性的条件。在一般时间尺度上证明的所有结果都包括积分和离散Volterra方程的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Stability of Integro-Differential Volterra Equation on Time Scales
Abstract We study the Volterra integro-differential equation on time scales and provide sufficient conditions for boundness of all solutions of considered equation. Using that result, we present the conditions for exponential stability of considered equation. All the results proved on the general time scale include results for both integral and discrete Volterra equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信