卡尔曼滤波器在大规模地理空间数据中的应用:人口动力学建模

IF 1.2 Q4 REMOTE SENSING
Hiroto Akatsuka, Masayuki Terada
{"title":"卡尔曼滤波器在大规模地理空间数据中的应用:人口动力学建模","authors":"Hiroto Akatsuka, Masayuki Terada","doi":"10.1145/3563692","DOIUrl":null,"url":null,"abstract":"To utilize a huge amount of observation data based on real-world events, a data assimilation process is needed to estimate the state of the system behind the observed data. The Kalman filter is a very commonly used technique in data assimilation, but it has a problem in terms of practical use from the viewpoint of processing efficiency and estimating the deterioration in precision when applied to particularly large-scale datasets. In this article, we propose a method that simultaneously addresses these problems and demonstrate its usefulness. The proposed method improves the processing efficiency and suppresses the deterioration in estimation precision by introducing correction processes focusing on the non-negative nature and sparseness of data in wavelet space. We show that the proposed method can accurately estimate population dynamics on the basis of an evaluation done using population data generated from cellular networks. In addition, the possibility of wide area abnormality detection using the proposed method is shown from a situation analysis of when Category 5 typhoon Hagibis made landfall in Japan. The proposed method has been deployed in a commercial service to estimate real-time population dynamics in Japan.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"9 1","pages":"1 - 29"},"PeriodicalIF":1.2000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Kalman Filter to Large-scale Geospatial Data: Modeling Population Dynamics\",\"authors\":\"Hiroto Akatsuka, Masayuki Terada\",\"doi\":\"10.1145/3563692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To utilize a huge amount of observation data based on real-world events, a data assimilation process is needed to estimate the state of the system behind the observed data. The Kalman filter is a very commonly used technique in data assimilation, but it has a problem in terms of practical use from the viewpoint of processing efficiency and estimating the deterioration in precision when applied to particularly large-scale datasets. In this article, we propose a method that simultaneously addresses these problems and demonstrate its usefulness. The proposed method improves the processing efficiency and suppresses the deterioration in estimation precision by introducing correction processes focusing on the non-negative nature and sparseness of data in wavelet space. We show that the proposed method can accurately estimate population dynamics on the basis of an evaluation done using population data generated from cellular networks. In addition, the possibility of wide area abnormality detection using the proposed method is shown from a situation analysis of when Category 5 typhoon Hagibis made landfall in Japan. The proposed method has been deployed in a commercial service to estimate real-time population dynamics in Japan.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\"9 1\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

摘要

为了利用基于真实世界事件的大量观测数据,需要进行数据同化过程来估计观测数据背后的系统状态。卡尔曼滤波器是数据同化中非常常用的技术,但当应用于特别大规模的数据集时,从处理效率和估计精度下降的角度来看,它在实际应用方面存在问题。在本文中,我们提出了一种同时解决这些问题并证明其有用性的方法。该方法通过引入关注小波空间中数据的非负性和稀疏性的校正过程,提高了处理效率,抑制了估计精度的下降。我们表明,所提出的方法可以在使用从蜂窝网络生成的种群数据进行评估的基础上准确估计种群动态。此外,通过对5级台风“哈比”登陆日本时的情况分析,表明了使用该方法进行大范围异常检测的可能性。所提出的方法已应用于商业服务中,以估计日本的实时人口动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Kalman Filter to Large-scale Geospatial Data: Modeling Population Dynamics
To utilize a huge amount of observation data based on real-world events, a data assimilation process is needed to estimate the state of the system behind the observed data. The Kalman filter is a very commonly used technique in data assimilation, but it has a problem in terms of practical use from the viewpoint of processing efficiency and estimating the deterioration in precision when applied to particularly large-scale datasets. In this article, we propose a method that simultaneously addresses these problems and demonstrate its usefulness. The proposed method improves the processing efficiency and suppresses the deterioration in estimation precision by introducing correction processes focusing on the non-negative nature and sparseness of data in wavelet space. We show that the proposed method can accurately estimate population dynamics on the basis of an evaluation done using population data generated from cellular networks. In addition, the possibility of wide area abnormality detection using the proposed method is shown from a situation analysis of when Category 5 typhoon Hagibis made landfall in Japan. The proposed method has been deployed in a commercial service to estimate real-time population dynamics in Japan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信