2环面上Morse函数的Kronrod-Reeb图的自同构

IF 0.2 Q4 MATHEMATICS
A. Kravchenko, Bohdan Feshchenko
{"title":"2环面上Morse函数的Kronrod-Reeb图的自同构","authors":"A. Kravchenko, Bohdan Feshchenko","doi":"10.31392/mfat-npu26_1.2020.07","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of special subgroups of the automorphism groups of Kronrod-Reeb graphs of a Morse functions on $2$-torus $T^2$ which arise from the action of diffeomorphisms preserving a given Morse function on $T^2$. In this paper we give a full description of such classes of groups.","PeriodicalId":44325,"journal":{"name":"Methods of Functional Analysis and Topology","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-torus\",\"authors\":\"A. Kravchenko, Bohdan Feshchenko\",\"doi\":\"10.31392/mfat-npu26_1.2020.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of special subgroups of the automorphism groups of Kronrod-Reeb graphs of a Morse functions on $2$-torus $T^2$ which arise from the action of diffeomorphisms preserving a given Morse function on $T^2$. In this paper we give a full description of such classes of groups.\",\"PeriodicalId\":44325,\"journal\":{\"name\":\"Methods of Functional Analysis and Topology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Functional Analysis and Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31392/mfat-npu26_1.2020.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Functional Analysis and Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/mfat-npu26_1.2020.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了在$2$-环面$T^2$上Morse函数的Kronrod-Reb图的自同构群的特殊子群,这些子群是由保持给定Morse函数在$T^2*上的微分同胚作用引起的。在本文中,我们给出了这类群的一个完整的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-torus
This paper is devoted to the study of special subgroups of the automorphism groups of Kronrod-Reeb graphs of a Morse functions on $2$-torus $T^2$ which arise from the action of diffeomorphisms preserving a given Morse function on $T^2$. In this paper we give a full description of such classes of groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed arXiv overlay journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信