基于MD的工程Ni–Al核壳纳米线变形过程研究:了解潜在的变形机制

IF 1.1 Q4 MECHANICS
Bassam A. Mohammed, R. S. Batbooti
{"title":"基于MD的工程Ni–Al核壳纳米线变形过程研究:了解潜在的变形机制","authors":"Bassam A. Mohammed, R. S. Batbooti","doi":"10.1515/cls-2022-0188","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays, core/shell structures due to very high thermal and electrical conductivity are taken into account in the manufacture of many industrial sensors and catalysis. Ni–Al core/shell structures are known as one of the most practical materials due to their high chemical stabilities at elevated temperatures. Since the evaluation of the mechanical properties of the industrial core/shell catalysts is crucial, identification of the mechanism responsible for their plastic deformation has been a challenging issue. Accordingly, in this study, the mechanical properties and plastic deformation process of Ni–Al core/shell structures were investigated using the molecular dynamics method. The results showed that due to the high-stress concentration in the Ni/Al interface, the crystalline defects including dislocations and stacking faults nucleate from this region. It was also observed that with increasing temperature, yield strength and elastic modulus of the samples decrease. On the other hand, increasing the temperature promotes the heat-activated mechanisms, which reduces the density of dislocations and stacking faults in the material. Consequently, the obstacles in the slip path of the dislocations as well as dislocation locks are reduced, weakening the mechanical properties of the samples.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MD-based study on the deformation process of engineered Ni–Al core–shell nanowires: Toward an understanding underlying deformation mechanisms\",\"authors\":\"Bassam A. Mohammed, R. S. Batbooti\",\"doi\":\"10.1515/cls-2022-0188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nowadays, core/shell structures due to very high thermal and electrical conductivity are taken into account in the manufacture of many industrial sensors and catalysis. Ni–Al core/shell structures are known as one of the most practical materials due to their high chemical stabilities at elevated temperatures. Since the evaluation of the mechanical properties of the industrial core/shell catalysts is crucial, identification of the mechanism responsible for their plastic deformation has been a challenging issue. Accordingly, in this study, the mechanical properties and plastic deformation process of Ni–Al core/shell structures were investigated using the molecular dynamics method. The results showed that due to the high-stress concentration in the Ni/Al interface, the crystalline defects including dislocations and stacking faults nucleate from this region. It was also observed that with increasing temperature, yield strength and elastic modulus of the samples decrease. On the other hand, increasing the temperature promotes the heat-activated mechanisms, which reduces the density of dislocations and stacking faults in the material. Consequently, the obstacles in the slip path of the dislocations as well as dislocation locks are reduced, weakening the mechanical properties of the samples.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

目前,由于核/壳结构具有很高的导热性和导电性,在许多工业传感器和催化剂的制造中都考虑到了核/壳结构。镍铝核/壳结构被认为是最实用的材料之一,因为它们在高温下具有很高的化学稳定性。由于评估工业核心/壳催化剂的机械性能是至关重要的,确定导致其塑性变形的机制一直是一个具有挑战性的问题。因此,本研究采用分子动力学方法研究了Ni-Al核/壳结构的力学性能和塑性变形过程。结果表明,由于Ni/Al界面的高应力集中,导致位错和层错等晶体缺陷在该区域形成核。随着温度的升高,试样的屈服强度和弹性模量逐渐降低。另一方面,温度的升高促进了热激活机制,从而降低了材料中的位错和层错密度。从而减少了位错滑移路径上的障碍和位错锁,削弱了样品的力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MD-based study on the deformation process of engineered Ni–Al core–shell nanowires: Toward an understanding underlying deformation mechanisms
Abstract Nowadays, core/shell structures due to very high thermal and electrical conductivity are taken into account in the manufacture of many industrial sensors and catalysis. Ni–Al core/shell structures are known as one of the most practical materials due to their high chemical stabilities at elevated temperatures. Since the evaluation of the mechanical properties of the industrial core/shell catalysts is crucial, identification of the mechanism responsible for their plastic deformation has been a challenging issue. Accordingly, in this study, the mechanical properties and plastic deformation process of Ni–Al core/shell structures were investigated using the molecular dynamics method. The results showed that due to the high-stress concentration in the Ni/Al interface, the crystalline defects including dislocations and stacking faults nucleate from this region. It was also observed that with increasing temperature, yield strength and elastic modulus of the samples decrease. On the other hand, increasing the temperature promotes the heat-activated mechanisms, which reduces the density of dislocations and stacking faults in the material. Consequently, the obstacles in the slip path of the dislocations as well as dislocation locks are reduced, weakening the mechanical properties of the samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信