随机效应荟萃分析使用检验统计量的精确分布进行推断

Pub Date : 2022-07-26 DOI:10.1007/s10463-022-00844-4
Keisuke Hanada, Tomoyuki Sugimoto
{"title":"随机效应荟萃分析使用检验统计量的精确分布进行推断","authors":"Keisuke Hanada,&nbsp;Tomoyuki Sugimoto","doi":"10.1007/s10463-022-00844-4","DOIUrl":null,"url":null,"abstract":"<div><p>Random-effects meta-analysis serves to integrate the results of multiple studies with methods such as moment estimation and likelihood estimation duly proposed. These existing methods are based on asymptotic normality with respect to the number of studies. However, the test and interval estimation deviate from the nominal significance level when integrating a small number of studies. Although a method for constructing more conservative intervals has been recently proposed, the exact distribution of test statistic for the overall treatment effect is not well known. In this paper, we provide an almost-exact distribution of the test statistic in random-effects meta-analysis and propose the test and interval estimation using the almost-exact distribution. Simulations demonstrate the accuracy of estimation and application to existing meta-analysis using the method proposed here. With known variance parameters, the estimation performance using the almost-exact distribution always achieves the nominal significance level regardless of the number of studies and heterogeneity. We also propose some methods to construct a conservative interval estimation, even when the variance parameters are unknown, and present their performances via simulation and an application to Alzheimer’s disease meta-analysis.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference using an exact distribution of test statistic for random-effects meta-analysis\",\"authors\":\"Keisuke Hanada,&nbsp;Tomoyuki Sugimoto\",\"doi\":\"10.1007/s10463-022-00844-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Random-effects meta-analysis serves to integrate the results of multiple studies with methods such as moment estimation and likelihood estimation duly proposed. These existing methods are based on asymptotic normality with respect to the number of studies. However, the test and interval estimation deviate from the nominal significance level when integrating a small number of studies. Although a method for constructing more conservative intervals has been recently proposed, the exact distribution of test statistic for the overall treatment effect is not well known. In this paper, we provide an almost-exact distribution of the test statistic in random-effects meta-analysis and propose the test and interval estimation using the almost-exact distribution. Simulations demonstrate the accuracy of estimation and application to existing meta-analysis using the method proposed here. With known variance parameters, the estimation performance using the almost-exact distribution always achieves the nominal significance level regardless of the number of studies and heterogeneity. We also propose some methods to construct a conservative interval estimation, even when the variance parameters are unknown, and present their performances via simulation and an application to Alzheimer’s disease meta-analysis.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00844-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00844-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机效应荟萃分析将多个研究的结果与适当提出的矩估计和似然估计等方法相结合。这些现有的方法是基于研究数量的渐近正态性。然而,当整合少量研究时,检验和区间估计偏离名义显著性水平。虽然最近提出了一种构造更保守区间的方法,但总体处理效果的检验统计量的确切分布尚不清楚。在本文中,我们提供了随机效应荟萃分析中检验统计量的几乎精确分布,并提出了使用几乎精确分布的检验和区间估计。仿真结果证明了估计的准确性以及本文提出的方法在现有元分析中的应用。在方差参数已知的情况下,无论研究数量和异质性如何,使用几乎精确分布的估计性能总是达到名义显著性水平。我们还提出了一些构建保守区间估计的方法,即使方差参数是未知的,并通过模拟和应用于阿尔茨海默病的meta分析来展示它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inference using an exact distribution of test statistic for random-effects meta-analysis

分享
查看原文
Inference using an exact distribution of test statistic for random-effects meta-analysis

Random-effects meta-analysis serves to integrate the results of multiple studies with methods such as moment estimation and likelihood estimation duly proposed. These existing methods are based on asymptotic normality with respect to the number of studies. However, the test and interval estimation deviate from the nominal significance level when integrating a small number of studies. Although a method for constructing more conservative intervals has been recently proposed, the exact distribution of test statistic for the overall treatment effect is not well known. In this paper, we provide an almost-exact distribution of the test statistic in random-effects meta-analysis and propose the test and interval estimation using the almost-exact distribution. Simulations demonstrate the accuracy of estimation and application to existing meta-analysis using the method proposed here. With known variance parameters, the estimation performance using the almost-exact distribution always achieves the nominal significance level regardless of the number of studies and heterogeneity. We also propose some methods to construct a conservative interval estimation, even when the variance parameters are unknown, and present their performances via simulation and an application to Alzheimer’s disease meta-analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信