{"title":"基于核函数的组学数据特征组合分析","authors":"Chao Li, Tianxiang Wang, Xiaohui Lin","doi":"10.1142/S021972002350021X","DOIUrl":null,"url":null,"abstract":"<p><p>Defining meaningful feature (molecule) combinations can enhance the study of disease diagnosis and prognosis. However, feature combinations are complex and various in biosystems, and the existing methods examine the feature cooperation in a single, fixed pattern for all feature pairs, such as linear combination. To identify the appropriate combination between two features and evaluate feature combination more comprehensively, this paper adopts kernel functions to study feature relationships and proposes a new omics data analysis method KF-[Formula: see text]-TSP. Besides linear combination, KF-[Formula: see text]-TSP also explores the nonlinear combination of features, and allows hybridizing multiple kernel functions to evaluate feature interaction from multiple views. KF-[Formula: see text]-TSP selects [Formula: see text] > 0 top-scoring pairs to build an ensemble classifier. Experimental results show that KF-[Formula: see text]-TSP with multiple kernel functions which evaluates feature combinations from multiple views is better than that with only one kernel function. Meanwhile, KF-[Formula: see text]-TSP performs better than TSP family algorithms and the previous methods based on conversion strategy in most cases. It performs similarly to the popular machine learning methods in omics data analysis, but involves fewer feature pairs. In the procedure of physiological and pathological changes, molecular interactions can be both linear and nonlinear. Hence, KF-[Formula: see text]-TSP, which can measure molecular combination from multiple perspectives, can help to mine information closely related to physiological and pathological changes and study disease mechanism.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"1 1","pages":"2350021"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing omics data by feature combinations based on kernel functions.\",\"authors\":\"Chao Li, Tianxiang Wang, Xiaohui Lin\",\"doi\":\"10.1142/S021972002350021X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Defining meaningful feature (molecule) combinations can enhance the study of disease diagnosis and prognosis. However, feature combinations are complex and various in biosystems, and the existing methods examine the feature cooperation in a single, fixed pattern for all feature pairs, such as linear combination. To identify the appropriate combination between two features and evaluate feature combination more comprehensively, this paper adopts kernel functions to study feature relationships and proposes a new omics data analysis method KF-[Formula: see text]-TSP. Besides linear combination, KF-[Formula: see text]-TSP also explores the nonlinear combination of features, and allows hybridizing multiple kernel functions to evaluate feature interaction from multiple views. KF-[Formula: see text]-TSP selects [Formula: see text] > 0 top-scoring pairs to build an ensemble classifier. Experimental results show that KF-[Formula: see text]-TSP with multiple kernel functions which evaluates feature combinations from multiple views is better than that with only one kernel function. Meanwhile, KF-[Formula: see text]-TSP performs better than TSP family algorithms and the previous methods based on conversion strategy in most cases. It performs similarly to the popular machine learning methods in omics data analysis, but involves fewer feature pairs. In the procedure of physiological and pathological changes, molecular interactions can be both linear and nonlinear. Hence, KF-[Formula: see text]-TSP, which can measure molecular combination from multiple perspectives, can help to mine information closely related to physiological and pathological changes and study disease mechanism.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"2350021\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S021972002350021X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002350021X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Analyzing omics data by feature combinations based on kernel functions.
Defining meaningful feature (molecule) combinations can enhance the study of disease diagnosis and prognosis. However, feature combinations are complex and various in biosystems, and the existing methods examine the feature cooperation in a single, fixed pattern for all feature pairs, such as linear combination. To identify the appropriate combination between two features and evaluate feature combination more comprehensively, this paper adopts kernel functions to study feature relationships and proposes a new omics data analysis method KF-[Formula: see text]-TSP. Besides linear combination, KF-[Formula: see text]-TSP also explores the nonlinear combination of features, and allows hybridizing multiple kernel functions to evaluate feature interaction from multiple views. KF-[Formula: see text]-TSP selects [Formula: see text] > 0 top-scoring pairs to build an ensemble classifier. Experimental results show that KF-[Formula: see text]-TSP with multiple kernel functions which evaluates feature combinations from multiple views is better than that with only one kernel function. Meanwhile, KF-[Formula: see text]-TSP performs better than TSP family algorithms and the previous methods based on conversion strategy in most cases. It performs similarly to the popular machine learning methods in omics data analysis, but involves fewer feature pairs. In the procedure of physiological and pathological changes, molecular interactions can be both linear and nonlinear. Hence, KF-[Formula: see text]-TSP, which can measure molecular combination from multiple perspectives, can help to mine information closely related to physiological and pathological changes and study disease mechanism.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.