通过针叶树跃迁的切丛的稳定性

IF 3.1 1区 数学 Q1 MATHEMATICS
Tristan Collins, Sebastien Picard, Shing-Tung Yau
{"title":"通过针叶树跃迁的切丛的稳定性","authors":"Tristan Collins,&nbsp;Sebastien Picard,&nbsp;Shing-Tung Yau","doi":"10.1002/cpa.22135","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a compact, Kähler, Calabi-Yau threefold and suppose <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>↦</mo>\n <munder>\n <mi>X</mi>\n <mo>̲</mo>\n </munder>\n <mo>⇝</mo>\n <msub>\n <mi>X</mi>\n <mi>t</mi>\n </msub>\n </mrow>\n <annotation>$X\\mapsto \\underline{X}\\leadsto X_t$</annotation>\n </semantics></math> , for <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mi>Δ</mi>\n </mrow>\n <annotation>$t\\in \\Delta$</annotation>\n </semantics></math>, is a conifold transition obtained by contracting finitely many disjoint <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(-1,-1)$</annotation>\n </semantics></math> curves in <i>X</i> and then smoothing the resulting ordinary double point singularities. We show that, for <math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mo>≪</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$|t|\\ll 1$</annotation>\n </semantics></math> sufficiently small, the tangent bundle <math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </msup>\n <msub>\n <mi>X</mi>\n <mi>t</mi>\n </msub>\n </mrow>\n <annotation>$T^{1,0}X_{t}$</annotation>\n </semantics></math> admits a Hermitian-Yang-Mills metric <math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>t</mi>\n </msub>\n <annotation>$H_t$</annotation>\n </semantics></math> with respect to the conformally balanced metrics constructed by Fu-Li-Yau. Furthermore, we describe the behavior of <math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>t</mi>\n </msub>\n <annotation>$H_t$</annotation>\n </semantics></math> near the vanishing cycles of <math>\n <semantics>\n <msub>\n <mi>X</mi>\n <mi>t</mi>\n </msub>\n <annotation>$X_t$</annotation>\n </semantics></math> as <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t\\rightarrow 0$</annotation>\n </semantics></math>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"284-371"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Stability of the tangent bundle through conifold transitions\",\"authors\":\"Tristan Collins,&nbsp;Sebastien Picard,&nbsp;Shing-Tung Yau\",\"doi\":\"10.1002/cpa.22135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a compact, Kähler, Calabi-Yau threefold and suppose <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>↦</mo>\\n <munder>\\n <mi>X</mi>\\n <mo>̲</mo>\\n </munder>\\n <mo>⇝</mo>\\n <msub>\\n <mi>X</mi>\\n <mi>t</mi>\\n </msub>\\n </mrow>\\n <annotation>$X\\\\mapsto \\\\underline{X}\\\\leadsto X_t$</annotation>\\n </semantics></math> , for <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <mi>Δ</mi>\\n </mrow>\\n <annotation>$t\\\\in \\\\Delta$</annotation>\\n </semantics></math>, is a conifold transition obtained by contracting finitely many disjoint <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(-1,-1)$</annotation>\\n </semantics></math> curves in <i>X</i> and then smoothing the resulting ordinary double point singularities. We show that, for <math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>t</mi>\\n <mo>|</mo>\\n <mo>≪</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$|t|\\\\ll 1$</annotation>\\n </semantics></math> sufficiently small, the tangent bundle <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>T</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>0</mn>\\n </mrow>\\n </msup>\\n <msub>\\n <mi>X</mi>\\n <mi>t</mi>\\n </msub>\\n </mrow>\\n <annotation>$T^{1,0}X_{t}$</annotation>\\n </semantics></math> admits a Hermitian-Yang-Mills metric <math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>t</mi>\\n </msub>\\n <annotation>$H_t$</annotation>\\n </semantics></math> with respect to the conformally balanced metrics constructed by Fu-Li-Yau. Furthermore, we describe the behavior of <math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>t</mi>\\n </msub>\\n <annotation>$H_t$</annotation>\\n </semantics></math> near the vanishing cycles of <math>\\n <semantics>\\n <msub>\\n <mi>X</mi>\\n <mi>t</mi>\\n </msub>\\n <annotation>$X_t$</annotation>\\n </semantics></math> as <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>→</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$t\\\\rightarrow 0$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 1\",\"pages\":\"284-371\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22135\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22135","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

摘要

设$X$是一个紧致的K\“ahler,Calabi-Yau三重,并假设$X\mapsto\aunderline{X}\leadstoX_t$,对于$t\in\Delta$,是一个通过收缩$X$中的有限多个不相交的$(-1,-1)$曲线,然后对得到的普通双点奇点进行光滑化而得到的针叶树跃迁^{1,0}X_{t} $给出了Fu-Li-Yau构造的保形平衡度量的HermitianYang-Mills度量$H_t$。此外,我们将$X_t$在消失周期附近的行为描述为$t\rightarrow0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of the tangent bundle through conifold transitions

Let X be a compact, Kähler, Calabi-Yau threefold and suppose X X ̲ X t $X\mapsto \underline{X}\leadsto X_t$ , for t Δ $t\in \Delta$ , is a conifold transition obtained by contracting finitely many disjoint ( 1 , 1 ) $(-1,-1)$ curves in X and then smoothing the resulting ordinary double point singularities. We show that, for | t | 1 $|t|\ll 1$ sufficiently small, the tangent bundle T 1 , 0 X t $T^{1,0}X_{t}$ admits a Hermitian-Yang-Mills metric H t $H_t$ with respect to the conformally balanced metrics constructed by Fu-Li-Yau. Furthermore, we describe the behavior of H t $H_t$ near the vanishing cycles of X t $X_t$ as t 0 $t\rightarrow 0$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信