C. Bui, N. Phan, Ngo Quoc Huy Tran, L. Doan, Quang Truong Vo, D. C. Tran, Thi Thanh Vi Nguyen, Duc Long Nguyen, Van Sanh Huynh, Tran Anh Ngoc Ho
{"title":"紫外线灯的消毒性能:CFD研究","authors":"C. Bui, N. Phan, Ngo Quoc Huy Tran, L. Doan, Quang Truong Vo, D. C. Tran, Thi Thanh Vi Nguyen, Duc Long Nguyen, Van Sanh Huynh, Tran Anh Ngoc Ho","doi":"10.14311/ap.2022.62.0418","DOIUrl":null,"url":null,"abstract":"Ultraviolet (UV)-based devices have shown their effectiveness on various germicidal purposes. To serve their design optimisation, the disinfection effectiveness of a vertically cylindrical UV lamp, whose wattage ranges from P = 30 − 100 W, is numerically investigated in this work. The UV radiation is solved by the Finite Volume Method together with the Discrete Ordinates model. Various results for the UV intensity and its bactericidal effects against several popular virus types, i.e., Corona-SARS, Herpes (type 2), and HIV, are reported and analysed in detail. Results show that the UV irradiance is greatly dependent on the lamp power. Additionally, it is indicated that the higher the lamp wattage employed, the larger the bactericidal rate is observed, resulting in the greater effectiveness of the UV disinfection process. Nevertheless, the wattage of P ≤ 100W is determined to be insufficient for an effective disinfection performance in a whole room; higher values of power must hence be considered in case intensive sterilization is required. Furthermore, the germicidal effect gets reduced with the viruses less sensitive to UV rays, e.g, the bactericidal rate against the HIV virus is only ∼8.98% at the surrounding walls.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disinfection performance of an ultraviolet lamp: a CFD investigation\",\"authors\":\"C. Bui, N. Phan, Ngo Quoc Huy Tran, L. Doan, Quang Truong Vo, D. C. Tran, Thi Thanh Vi Nguyen, Duc Long Nguyen, Van Sanh Huynh, Tran Anh Ngoc Ho\",\"doi\":\"10.14311/ap.2022.62.0418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultraviolet (UV)-based devices have shown their effectiveness on various germicidal purposes. To serve their design optimisation, the disinfection effectiveness of a vertically cylindrical UV lamp, whose wattage ranges from P = 30 − 100 W, is numerically investigated in this work. The UV radiation is solved by the Finite Volume Method together with the Discrete Ordinates model. Various results for the UV intensity and its bactericidal effects against several popular virus types, i.e., Corona-SARS, Herpes (type 2), and HIV, are reported and analysed in detail. Results show that the UV irradiance is greatly dependent on the lamp power. Additionally, it is indicated that the higher the lamp wattage employed, the larger the bactericidal rate is observed, resulting in the greater effectiveness of the UV disinfection process. Nevertheless, the wattage of P ≤ 100W is determined to be insufficient for an effective disinfection performance in a whole room; higher values of power must hence be considered in case intensive sterilization is required. Furthermore, the germicidal effect gets reduced with the viruses less sensitive to UV rays, e.g, the bactericidal rate against the HIV virus is only ∼8.98% at the surrounding walls.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2022.62.0418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2022.62.0418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Disinfection performance of an ultraviolet lamp: a CFD investigation
Ultraviolet (UV)-based devices have shown their effectiveness on various germicidal purposes. To serve their design optimisation, the disinfection effectiveness of a vertically cylindrical UV lamp, whose wattage ranges from P = 30 − 100 W, is numerically investigated in this work. The UV radiation is solved by the Finite Volume Method together with the Discrete Ordinates model. Various results for the UV intensity and its bactericidal effects against several popular virus types, i.e., Corona-SARS, Herpes (type 2), and HIV, are reported and analysed in detail. Results show that the UV irradiance is greatly dependent on the lamp power. Additionally, it is indicated that the higher the lamp wattage employed, the larger the bactericidal rate is observed, resulting in the greater effectiveness of the UV disinfection process. Nevertheless, the wattage of P ≤ 100W is determined to be insufficient for an effective disinfection performance in a whole room; higher values of power must hence be considered in case intensive sterilization is required. Furthermore, the germicidal effect gets reduced with the viruses less sensitive to UV rays, e.g, the bactericidal rate against the HIV virus is only ∼8.98% at the surrounding walls.
期刊介绍:
Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.