{"title":"磁场和杀伤磁场中带电粒子运动的几何方面及其在反德西特三维空间中的相应轨迹","authors":"Zafar Iqbal","doi":"10.1080/1726037X.2022.2142355","DOIUrl":null,"url":null,"abstract":"Abstract We inquire the motion of charged particles varying under the effect of Lorentz force produced by magnetic and Killing magnetic fields in anti-de Sitter 3-space . Primarily, we characterize magnetic trajectories in in terms of their Frenet apparatus. Thereafter, utilizing a geometrical model of split-quaternions for (where corresponds to a subspace of the Lie group H of split-quaternions) we find 6 independent unit Killing vector fields on which constitutes a basis for the corresponding 6D Lie algebra i(). We conclude with characterizations of Killing magnetic trajectories in with respect to quasi-slope, curvature and torsion or pseudo-torsion (depending on the situation).","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"20 1","pages":"191 - 226"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometrical Aspects of Motion of Charged Particles in Magnetic and Killing Magnetic Fields and Their Corresponding Trajectories in Anti-De Sitter 3-Space\",\"authors\":\"Zafar Iqbal\",\"doi\":\"10.1080/1726037X.2022.2142355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We inquire the motion of charged particles varying under the effect of Lorentz force produced by magnetic and Killing magnetic fields in anti-de Sitter 3-space . Primarily, we characterize magnetic trajectories in in terms of their Frenet apparatus. Thereafter, utilizing a geometrical model of split-quaternions for (where corresponds to a subspace of the Lie group H of split-quaternions) we find 6 independent unit Killing vector fields on which constitutes a basis for the corresponding 6D Lie algebra i(). We conclude with characterizations of Killing magnetic trajectories in with respect to quasi-slope, curvature and torsion or pseudo-torsion (depending on the situation).\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"20 1\",\"pages\":\"191 - 226\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2022.2142355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2022.2142355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometrical Aspects of Motion of Charged Particles in Magnetic and Killing Magnetic Fields and Their Corresponding Trajectories in Anti-De Sitter 3-Space
Abstract We inquire the motion of charged particles varying under the effect of Lorentz force produced by magnetic and Killing magnetic fields in anti-de Sitter 3-space . Primarily, we characterize magnetic trajectories in in terms of their Frenet apparatus. Thereafter, utilizing a geometrical model of split-quaternions for (where corresponds to a subspace of the Lie group H of split-quaternions) we find 6 independent unit Killing vector fields on which constitutes a basis for the corresponding 6D Lie algebra i(). We conclude with characterizations of Killing magnetic trajectories in with respect to quasi-slope, curvature and torsion or pseudo-torsion (depending on the situation).