下界函数法在遗传算法收敛性研究中的应用

Q4 Decision Sciences
J. Socala, W. Kosinski
{"title":"下界函数法在遗传算法收敛性研究中的应用","authors":"J. Socala, W. Kosinski","doi":"10.14708/MA.V35I49/08.1385","DOIUrl":null,"url":null,"abstract":"Markovian operators, non-negative linear operators and its subgroups play a significant role for the description of phenomena observed in the nature. Research on asymptotic stability is one of the main issues in this respect. A. Lasota and J. A. Yorke proved in 1982 that the necessary and sufficient condition of the asymptotic stability of a Markovian operator is the existence of a non-trivial lower-bound function. In the present paper it is shown how the method of lower-bound function can be applied to the investigation of genetic algorithms. Genetic algorithms considered used for solving of non-smooth optimization problems are compositions of two random operators: selection and mutation. The compositions are Markovian matrices.","PeriodicalId":36622,"journal":{"name":"Mathematica Applicanda","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the lower-bound function method to the investigation of the convergence of genetic algorithms\",\"authors\":\"J. Socala, W. Kosinski\",\"doi\":\"10.14708/MA.V35I49/08.1385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markovian operators, non-negative linear operators and its subgroups play a significant role for the description of phenomena observed in the nature. Research on asymptotic stability is one of the main issues in this respect. A. Lasota and J. A. Yorke proved in 1982 that the necessary and sufficient condition of the asymptotic stability of a Markovian operator is the existence of a non-trivial lower-bound function. In the present paper it is shown how the method of lower-bound function can be applied to the investigation of genetic algorithms. Genetic algorithms considered used for solving of non-smooth optimization problems are compositions of two random operators: selection and mutation. The compositions are Markovian matrices.\",\"PeriodicalId\":36622,\"journal\":{\"name\":\"Mathematica Applicanda\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Applicanda\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14708/MA.V35I49/08.1385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Applicanda","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14708/MA.V35I49/08.1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

马尔可夫算子、非负线性算子及其子群在描述自然界中观察到的现象方面发挥着重要作用。渐近稳定性的研究是这方面的主要问题之一。A.Lasota和J.A.Yorke在1982年证明了马尔可夫算子渐近稳定的充要条件是非平凡下界函数的存在。本文介绍了下界函数法如何应用于遗传算法的研究。用于求解非光滑优化问题的遗传算法由两个随机算子组成:选择算子和变异算子。组成是马尔可夫矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the lower-bound function method to the investigation of the convergence of genetic algorithms
Markovian operators, non-negative linear operators and its subgroups play a significant role for the description of phenomena observed in the nature. Research on asymptotic stability is one of the main issues in this respect. A. Lasota and J. A. Yorke proved in 1982 that the necessary and sufficient condition of the asymptotic stability of a Markovian operator is the existence of a non-trivial lower-bound function. In the present paper it is shown how the method of lower-bound function can be applied to the investigation of genetic algorithms. Genetic algorithms considered used for solving of non-smooth optimization problems are compositions of two random operators: selection and mutation. The compositions are Markovian matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Applicanda
Mathematica Applicanda Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
0.40
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信