天然气压缩因子测定的经验关联式和状态有效性方程的比较研究

IF 0.2 Q4 CHEMISTRY, MULTIDISCIPLINARY
V. Malyshev, Yana F. Nurgalieva, E. Moiseeva
{"title":"天然气压缩因子测定的经验关联式和状态有效性方程的比较研究","authors":"V. Malyshev, Yana F. Nurgalieva, E. Moiseeva","doi":"10.52571/ptq.v18.n38.2021.14_malyshev_pgs_188_213.pdf","DOIUrl":null,"url":null,"abstract":"Introduction: Today, there are four main groups of methods for calculating the compressibility factor of natural gas: experimental measurements, equations of state, empirical correlations, modern methods based on genetic algorithms, neural networks, atomistic modeling (Monte Carlo method and molecular dynamics). A correctly chosen method can improve the accuracy of calculating gas reserves and predicting its production and processing. Aim: To find the optimal methods for calculating the z-factor following the characteristic thermobaric conditions. Methods: To determine the best method for calculating the compressibility factor, the effectiveness of using various empirical correlations and equations of state to predict the compressibility factor of hydrocarbon systems (reservoir gases and separation gases) of various compositions were evaluated by comparing numerical results with experimental data. Results and Discussion: Based on 824 experimental values of the compressibility factor for 235 various gas mixtures in the pressure range from 0.1 to 94 MPa and temperatures from 273 to 437 K, the optimal equation of state and empirical correlation dependence for accurate z-factor prediction was found. It is shown that for all gas mixtures the Peng-Robinson equation of state with the shift parameter and Brusilovsky equation of state allow achieving best results. For these methods, the average absolute relative error does not exceed 2%. Among the correlation dependences, the best results are shown by the Sanjari and Nemati Lay; Heidaryan, Moghadasi and Rahimi correlations with an error not exceeding 3%. Conclusions: It was found that for the proposed methods, the reduced pressure has a more significant effect on the accuracy of the calculated values than the reduced temperature. It is shown that when studying acid gas mixtures with a carbon dioxide content of more than 10%, the equations of state better describe the phase behavior of the system in comparison with empirical correlations.","PeriodicalId":45103,"journal":{"name":"Periodico Tche Quimica","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARATIVE STUDY OF EMPIRICAL CORRELATIONS AND EQUATIONS OF STATE EFFECTIVENESS FOR COMPRESSIBILITY FACTOR OF NATURAL GAS DETERMINATION\",\"authors\":\"V. Malyshev, Yana F. Nurgalieva, E. Moiseeva\",\"doi\":\"10.52571/ptq.v18.n38.2021.14_malyshev_pgs_188_213.pdf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Today, there are four main groups of methods for calculating the compressibility factor of natural gas: experimental measurements, equations of state, empirical correlations, modern methods based on genetic algorithms, neural networks, atomistic modeling (Monte Carlo method and molecular dynamics). A correctly chosen method can improve the accuracy of calculating gas reserves and predicting its production and processing. Aim: To find the optimal methods for calculating the z-factor following the characteristic thermobaric conditions. Methods: To determine the best method for calculating the compressibility factor, the effectiveness of using various empirical correlations and equations of state to predict the compressibility factor of hydrocarbon systems (reservoir gases and separation gases) of various compositions were evaluated by comparing numerical results with experimental data. Results and Discussion: Based on 824 experimental values of the compressibility factor for 235 various gas mixtures in the pressure range from 0.1 to 94 MPa and temperatures from 273 to 437 K, the optimal equation of state and empirical correlation dependence for accurate z-factor prediction was found. It is shown that for all gas mixtures the Peng-Robinson equation of state with the shift parameter and Brusilovsky equation of state allow achieving best results. For these methods, the average absolute relative error does not exceed 2%. Among the correlation dependences, the best results are shown by the Sanjari and Nemati Lay; Heidaryan, Moghadasi and Rahimi correlations with an error not exceeding 3%. Conclusions: It was found that for the proposed methods, the reduced pressure has a more significant effect on the accuracy of the calculated values than the reduced temperature. It is shown that when studying acid gas mixtures with a carbon dioxide content of more than 10%, the equations of state better describe the phase behavior of the system in comparison with empirical correlations.\",\"PeriodicalId\":45103,\"journal\":{\"name\":\"Periodico Tche Quimica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodico Tche Quimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52571/ptq.v18.n38.2021.14_malyshev_pgs_188_213.pdf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Tche Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52571/ptq.v18.n38.2021.14_malyshev_pgs_188_213.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,计算天然气可压缩系数的方法主要有四大类:实验测量、状态方程、经验关联、基于遗传算法的现代方法、神经网络、原子建模(蒙特卡罗方法和分子动力学)。选择正确的方法可以提高天然气储量计算和生产加工预测的准确性。目的:寻找典型温压条件下z因子的最佳计算方法。方法:为确定可压缩系数的最佳计算方法,利用各种经验关联和状态方程对不同组分烃体系(储层气和分离气)的可压缩系数进行预测,并将数值结果与实验数据进行对比。结果与讨论:基于压力为0.1 ~ 94 MPa、温度为273 ~ 437 K的235种不同气体混合物的824个压缩系数实验值,找到了精确预测z因子的最佳状态方程和经验相关关系。结果表明,对于所有气体混合物,具有位移参数的Peng-Robinson状态方程和Brusilovsky状态方程可以得到最好的结果。这些方法的平均绝对相对误差不超过2%。在相关依赖关系中,Sanjari和Nemati Lay表现出最好的效果;Heidaryan, Moghadasi和Rahimi相关性误差不超过3%。结论:对于所提出的方法,减压对计算值精度的影响比降温对计算值精度的影响更显著。结果表明,当研究二氧化碳含量大于10%的酸性气体混合物时,与经验关联相比,状态方程能更好地描述体系的相行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPARATIVE STUDY OF EMPIRICAL CORRELATIONS AND EQUATIONS OF STATE EFFECTIVENESS FOR COMPRESSIBILITY FACTOR OF NATURAL GAS DETERMINATION
Introduction: Today, there are four main groups of methods for calculating the compressibility factor of natural gas: experimental measurements, equations of state, empirical correlations, modern methods based on genetic algorithms, neural networks, atomistic modeling (Monte Carlo method and molecular dynamics). A correctly chosen method can improve the accuracy of calculating gas reserves and predicting its production and processing. Aim: To find the optimal methods for calculating the z-factor following the characteristic thermobaric conditions. Methods: To determine the best method for calculating the compressibility factor, the effectiveness of using various empirical correlations and equations of state to predict the compressibility factor of hydrocarbon systems (reservoir gases and separation gases) of various compositions were evaluated by comparing numerical results with experimental data. Results and Discussion: Based on 824 experimental values of the compressibility factor for 235 various gas mixtures in the pressure range from 0.1 to 94 MPa and temperatures from 273 to 437 K, the optimal equation of state and empirical correlation dependence for accurate z-factor prediction was found. It is shown that for all gas mixtures the Peng-Robinson equation of state with the shift parameter and Brusilovsky equation of state allow achieving best results. For these methods, the average absolute relative error does not exceed 2%. Among the correlation dependences, the best results are shown by the Sanjari and Nemati Lay; Heidaryan, Moghadasi and Rahimi correlations with an error not exceeding 3%. Conclusions: It was found that for the proposed methods, the reduced pressure has a more significant effect on the accuracy of the calculated values than the reduced temperature. It is shown that when studying acid gas mixtures with a carbon dioxide content of more than 10%, the equations of state better describe the phase behavior of the system in comparison with empirical correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodico Tche Quimica
Periodico Tche Quimica CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
17
期刊介绍: The Journal publishes original research papers, review articles, short communications (scientific publications), book reviews, forum articles, announcements or letters as well as interviews. Researchers from all countries are invited to publish on its pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信